1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
//! The [Bits] type is used to capture values with arbitrarily large (but known) bit length
//!
//! One significant difference between hardware design and software programming is the need
//! (and indeed ability) to easily manipulate collections of bits that are of various lengths.
//! While Rust has built in types to represent 8, 16, 32, 64, and 128 bits (at the time of this
//! writing, anyway), it is difficult to represent a 5 bit type. Or a 256 bit type. Or indeed
//! any bit length that differs from one of the supported values.
//!
//! In hardware design, the bit size is nearly always unusual, as bits occupy physical space,
//! and as a result, as a logic designer, you will intentionally use the smallest number of
//! bits needed to capture a value. For example, if you are reading a single nibble at a
//! time from a bus, this is clearly a 4 bit value, and storing it in a `u8` is a waste of
//! space and resources.
//!
//! To model this behavior in RustHDL, we have the [Bits] type, which attempts to be as close
//! as possible to a hardware bit vector. The size must be known at compile time, and there is
//! some internal optimization for short bitvectors being represented efficiently, but ideally
//! you should be able to think of it as a bit of arbitrary length. Note that the [Bits]
//! type is `Copy`, which is quite important. This means in your RustHDL code, you can freely
//! copy and assign bitvectors without worrying about the borrow checker or trying to call
//! `clone` in the midst of your HDL.
//!
//! For the most part, the [Bits] type is meant to act like a `u32` or `u128` type as far
//! as your code is concerned. But the emulation of built-in types is not perfect, and
//! you may struggle with them a bit.
//!
//! # Constructing [Bits]
//! There are several ways to construct a [Bits] type. It includes an implementation of
//! the [Default](std::default::Default), trait, so if you need a zero value, you can use
//! that form:
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<50> = Default::default();
//! ```
//! This will construct a length 50 bit vector that is initialized to all `0`.
//!
//! You can also convert from literals into bit vectors using the [From] and [Into] traits,
//! provided the literals are of the `u64` type.
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<50> = 0xBEEF.into();
//! ```
//!
//! In some cases, Rust complains about literals, and you may need to provide a suffix:
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<50> = 0xDEAD_BEEF_u64.into();
//! ```
//! However, in most cases, you can leave literals suffix-free, and Rust will automatically
//! determine the type from the context.
//!
//! You can construct a larger constant using the [bits] function. If you have a literal of up to
//! 128 bits, it provides a functional form
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<200> = bits(0xDEAD_BEEE); // Works for up to 128 bit constants.
//! ```
//!
//! There is also the [ToBits] trait, which is implemented on the basic unsigned integer types.
//! This trait allows you to handily convert from different integer values
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<10> = 32_u8.to_bits();
//! ```
//!
//!
//! # Operations
//! Only a subset of operations are defined for [Bits]. These are the operations that can
//! be synthesized in hardware without surprises (generally speaking). In Rust, you can
//! operate between [Bits] types and other [Bits] of the _same width_, or you can
//! use integer literals. *Be careful!* Especially when manipulating signed quantities. Use the
//! [Signed](crate::core::signed::Signed) type for those.
//!
//! ## Addition
//! You can perform wrapping addition using the `+` operator.
//! Here are some simple examples of addition. First the version using a literal
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<200> = bits(0xDEAD_BEEE);
//! let y: Bits<200> = x + 1;
//! assert_eq!(y, bits(0xDEAD_BEEF));
//! ```
//!
//! And now a second example that uses two [Bits] values
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<40> = bits(0xDEAD_0000);
//! let y: Bits<40> = bits(0x0000_CAFE);
//! let z = x + y;
//! assert_eq!(z, bits(0xDEAD_CAFE));
//! ```
//!
//! Note that the addition operator is _silently wrapping_. In other words the carry
//! bit is discarded silently (again - this is what hardware typically does). So you
//! may find this result surprising:
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<40> = bits(0xFF_FFFF_FFFF);
//! let y = x + 1;
//! assert_eq!(y, bits(0));
//! ```
//!
//! In this case, the addition of 1 caused [x] to wrap to all zeros. This is totally normal,
//! and what one would expect from hardware addition (without a carry). If you _need_ the
//! carry bit, then the solution is to first cast to 1 higher bit, and then add, or alternately,
//! to compute the carry directly.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<40> = bits(0xFF_FFFF_FFFF);
//! let y = bit_cast::<41, 40>(x) + 1;
//! assert_eq!(y, bits(0x100_0000_0000));
//! ```
//!
//! The order of the arguments does not matter. The bit width of the calculation will be
//! determined by the [Bits] width.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x : Bits<25> = bits(0xCAFD);
//! let y = 1 + x;
//! assert_eq!(y, bits(0xCAFE));
//! ```
//!
//! However, you cannot combine two different width [Bits] values in a single expression.
//! ```compile_fail
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<20> = bits(0x1234);
//! let y: Bits<21> = bits(0x5123);
//! let z = x + y; // Won't compile!
//! ```
//!
//! ## Subtraction
//! Hardware subtraction is defined using 2-s complement representation for negative numbers.
//! This is pretty much a universal standard for representing negative numbers in binary, and
//! has the added advantage that a hardware subtractor can be built from an adder and some basic
//! gates. Subtraction operates much like the [Wrapping] class. Note that overflow and underflow
//! are _not_ detected in RustHDL (nor are they detected in most hardware implementations either).
//!
//! Here is a simple example with a literal and subtraction that does not cause udnerflow
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<40> = bits(0xDEAD_BEF0);
//! let y = x - 1;
//! assert_eq!(y, bits(0xDEAD_BEEF));
//! ```
//!
//! When values underflow, the representation is still valid as a 2-s complement number. For
//! example,
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(0x40);
//! let y: Bits<16> = bits(0x60);
//! let z = x - y;
//! assert_eq!(z, bits(0xFFFF-0x20+1));
//! ```
//!
//! Here, we compare the value of `z` with `0xFFFF-0x20+1` which is the 2-s complement
//! representation of `-0x20`.
//!
//! You can also put the literal on the left side of the subtraction expression, as expected. The
//! bitwidth of the computation will be driven by the width of the [Bits] in the expression.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x = bits::<32>(0xBABE);
//! let z = 0xB_BABE - x;
//! assert_eq!(z, bits(0xB_0000));
//! ```
//!
//! ## Bitwise And
//!
//! You can combine [Bits] using the and operator `&`. In general, avoid using the shortcut
//! logical operator `&&`, since this operator is really only defined for logical (scalar) values
//! of type `bool`.
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<32> = bits(0xDEAD_BEEF);
//! let y: Bits<32> = bits(0xFFFF_0000);
//! let z = x & y;
//! assert_eq!(z, bits(0xDEAD_0000));
//! ```
//!
//! Of course, you can also use a literal value in the `and` operation.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<32> = bits(0xDEAD_BEEF);
//! let z = x & 0x0000_FFFF;
//! assert_eq!(z, bits(0xBEEF))
//! ```
//!
//! and similarly, the literal can appear on the left of the `and` expression.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<32> = bits(0xCAFE_BEEF);
//! let z = 0xFFFF_0000 & x;
//! assert_eq!(z, bits(0xCAFE_0000));
//! ```
//!
//! Just like all other binary operations, you cannot mix widths (unless one of the
//! values is a literal).
//! ```compile_fail
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(0xFEED_FACE);
//! let y: Bits<17> = bits(0xABCE);
//! let z = x & y; // Won't compile!
//! ```
//!
//! ## Bitwise Or
//!
//! There is also a bitwise-OR operation using the `|` symbol. Note that the logical OR
//! (or shortcut OR) operator `||` is not supported for [Bits], as it is only defined for
//! scalar boolean values.
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x : Bits<32> = bits(0xBEEF_0000);
//! let y : Bits<32> = bits(0x0000_CAFE);
//! let z = x | y;
//! assert_eq!(z, bits(0xBEEF_CAFE));
//! ```
//!
//! You can also use literals
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x : Bits<32> = bits(0xBEEF_0000);
//! let z = x | 0x0000_CAFE;
//! assert_eq!(z, bits(0xBEEF_CAFE));
//! ```
//!
//! The caveat about mixing [Bits] of different widths still applies.
//!
//! ## Bitwise Xor
//!
//! There is a bitwise-Xor operation using the `^` operator. This will compute the
//! bitwise exclusive OR of the two values.
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x : Bits<32> = bits(0xCAFE_BABE);
//! let y : Bits<32> = bits(0xFF00_00FF);
//! let z = y ^ x;
//! let w = z ^ y; // XOR applied twice is a null-op
//! assert_eq!(w, x);
//! ```
//!
//! ## Bitwise comparison
//!
//! The equality operator `==` can compare two [Bits] for bit-wise equality.
//!
//!```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(0x5ea1);
//! let y: Bits<16> = bits(0xbadb);
//! assert_eq!(x == y, false)
//!```
//!
//! Again, it is a compile time failure to attempt to compare [Bits] of different
//! widths.
//!
//!```compile_fail
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<15> = bits(52);
//! let y: Bits<16> = bits(32);
//! let z = x == y; // Won't compile - bit widths must match
//!```
//!
//! You can compare to literals, as they will automatically extended (or truncated) to match the
//! bitwidth of the [Bits] value.
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x : Bits<16> = bits(32);
//! let z = x == 32;
//! let y = 32 == x;
//! assert!(z);
//! assert!(y);
//! ```
//!
//! ## Unsigned comparison
//!
//! The [Bits] type only supports unsigned comparisons. If you compare a [Bits] value
//! to a signed integer, it will first convert the signed integer into 2s complement
//! representation and then perform an unsigned comparison. That is most likely _not_ what
//! you want. However, until there is full support for signed integer computations, that is
//! the behavior you get. Hardware signed comparisons require more circuitry and logic
//! than unsigned comparisons, so the rationale is to not inadvertently bloat your hardware
//! designs with sign-aware circuitry when you don't explicitly invoke it. If you want signed
//! values, use [Signed].
//!
//! Here are some simple examples.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(52);
//! let y: Bits<16> = bits(13);
//! assert!(y < x)
//! ```
//!
//! We can also compare with literals, which RustHDL will expand out to match the bit width
//! of the [Bits] being compared to.
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(52);
//! let y = x < 135; // Converts the 135 to a Bits<16> and then compares
//! assert!(y)
//! ```
//!
//! ## Shift Left
//!
//! RustHDl supports left shift bit operations using the `<<` operator.
//! Bits that shift off the left end of
//! the bit vector (most significant bits).
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(0xDEAD);
//! let y = x << 8;
//! assert_eq!(y, bits(0xAD00));
//! ```
//!
//! ## Shift Right
//!
//! Right shifting is also supported using the `>>` operator.
//! Bits that shift off the right end of the
//! the bit vector (least significant bits).
//!
//! ```
//! # use rust_hdl::core::prelude::*;
//! let x: Bits<16> = bits(0xDEAD);
//! let y = x >> 8;
//! assert_eq!(y, bits(0x00DE));
//! ```
use crate::core::bitvec::BitVec;
use crate::core::short_bit_vec::{ShortBitVec, ShortType, SHORT_BITS};
use crate::core::synth::VCDValue;
use num_bigint::BigUint;
use num_traits::ToPrimitive;
use std::cmp::Ordering;
use std::fmt::{Binary, Debug, Formatter, LowerHex, UpperHex};
use std::hash::Hasher;
use std::num::Wrapping;
// This comes with a few invariants that must be maintained for short representation
// The short value must be less than 2^N
// N <= SHORT_BITS --> Short repr, otherwise Long repr
/// The [LiteralType] is used to set the type for literals that appear in RustHDL
/// expressions. Because of how Rust's type inference currently works, an expression
/// like
/// ```
/// # use rust_hdl::core::prelude::*;
///
/// let x: Bits<32> = 0xDEADBEEF.into();
/// let y : Bits<32> = x + 1;
/// ```
/// only works if Rust can unambiguously assign a type to the literal (either `DEADBEEF` or `1`).
/// In earlier versions of RustHDL, this required adding a suffix to the literal like `0xDEADBEEF_u32`,
/// but those suffixes in turn littered the code and made it difficult to read. Now, only one type
/// of literal is supported [LiteralType], which is an alias for [u64]. As such, any un-suffixed
/// number is assumed to be at most a 64 bit integer. This does not limit you in any way from
/// using suffixed literals. You can express, for example, up to 128 bit constants using standard
/// Rust notation, and using the [to_bits] trait to convert it to a [Bits] type.
/// ```
/// # use rust_hdl::core::prelude::*;
///
/// let x: Bits<128> = 0xDEADBEEF_CAFE_1234_u128.to_bits(); // Works!
/// ```
/// However, the following will fail, since the [From] trait is only implemented on [LiteralType]
/// to make the conversion unambiguous.
/// ```compile_fail
/// # use rust_hdl::core::prelude::*;
///
/// let x: Bits<128> = 0xDEADBEEF_CAFE_1234_u128.into(); // Fails to compile, since conversion from [u128] is not defined
/// ```
pub type LiteralType = u64;
/// [LITERAL_BITS] is set to the number of bits in the [LiteralType]. I.e., it is guaranteed that
/// the number of bits in [LiteralType] is [LITERAL_BITS].
pub const LITERAL_BITS: usize = 64;
/// Compute the minimum number of bits to represent a container with t items.
/// This is basically `ceil(log2(t))` as a constant (compile time computable) function.
/// You can use it where a const generic (bit width) argument is required.
///
/// Example
///
/// Unfortunately, with stable Rust, this function is not of much use.
/// For now, const generic arguments cannot be used in expressions yet.
/// Suppose we want to design a simple state machine that counts from
/// from 0 to some maximum number N-1, and then cycles again. We
/// want to specify the maximum number, not the number of bits needed
/// to represent it. In this case, we would like to use the
/// compile time `clog2` function to compute the bit width of
/// the signal that holds the count.
///
/// ```rust, compile_fail
/// # use rust_hdl::core::prelude::*;
///
/// #[derive(LogicBlock, Default)]
/// struct CountToN<const N: usize> {
/// signal_out: Signal<Out, Bits<{clog2({N})}>>,
/// }
/// ```
///
///
pub const fn clog2(t: usize) -> usize {
let mut p = 0;
let mut b = 1;
while b < t {
p += 1;
b *= 2;
}
p
}
#[test]
fn test_clog2_is_correct() {
assert_eq!(clog2(1024), 10);
}
/// The [Bits] type holds a bit array of size [N].
#[derive(Clone, Debug, Copy)]
pub enum Bits<const N: usize> {
#[doc(hidden)]
Short(ShortBitVec<N>),
#[doc(hidden)]
Long(BitVec<N>),
}
/// Convert from a [BigUint] to a [Bits]. Will panic if the number of bits
/// needed to represent the value are greater than the width of the [Bits].
/// ```
/// # use num_bigint::BigUint;
/// # use rust_hdl::core::bits::Bits;
/// let x = BigUint::parse_bytes(b"10111000101", 2).unwrap();
/// let y : Bits<16> = x.into();
/// println!("y = {:x}", y); // Prints y = 02c5
/// ```
/// The following will panic, because the value cannot be represented in the
/// given number of bits.
/// ```
/// # use rust_hdl::core::prelude::*;
/// # use num_bigint::BigUint;
/// let x = BigUint::parse_bytes(b"10111000101", 2).unwrap();
/// let y : Bits<12> = x.into(); // Panics
/// ```
impl<const N: usize> From<BigUint> for Bits<N> {
fn from(x: BigUint) -> Self {
assert!(
x.bits() <= N as u64,
"cannot fit value from BigUInt with {} bits into Bits<{}>",
x.bits(),
N
);
if N <= SHORT_BITS {
x.to_u64().unwrap().into()
} else {
let mut ret = [false; N];
for i in 0..N {
ret[i] = x.bit(i as u64)
}
Bits::Long(ret.into())
}
}
}
/// Convert from a [Bits] to a [BigUint].
/// ```
/// # use rust_hdl::core::prelude::*;
/// # use num_bigint::BigUint;
/// let x : Bits<128> = 0xDEAD_BEEF_CAFE_BABE_1234_5678_u128.to_bits();
/// let y : BigUint = x.into();
/// println!("y = {:x}", y); // Prints 0xDEAD_BEEF_CAFE_BABE_1234_5678
/// ```
impl<const N: usize> From<Bits<N>> for BigUint {
fn from(y: Bits<N>) -> Self {
let mut x = BigUint::default();
for i in 0..N {
x.set_bit(i as u64, y.get_bit(i));
}
x
}
}
#[cfg(test)]
fn random_bits<const N: usize>() -> Bits<N> {
use rand::random;
let mut x = Bits::default();
for bit in 0..N {
if random::<bool>() {
x = x.replace_bit(bit, true);
}
}
x
}
#[test]
fn test_biguint_roundtrip() {
use rand::random;
use seq_macro::seq;
seq!(N in 5..150 {
for _iters in 0..10 {
let y: Bits<N> = random_bits();
let z: BigUint = y.into();
let h: Bits<N> = z.into();
assert_eq!(h, y);
}
});
seq!(N in 5..150 {
for _iters in 0..10 {
let bits = (0..N).map(|_| if random::<bool>() {
b"1"[0]
} else {
b"0"[0]
}).collect::<Vec<u8>>();
let y = BigUint::parse_bytes(&bits, 2).unwrap();
let z : Bits<N> = y.clone().into();
let h : BigUint = z.into();
assert_eq!(h, y);
}
});
}
#[test]
fn test_cast_from_biguint() {
let x = BigUint::parse_bytes(b"1011000101", 2).unwrap();
let y: Bits<16> = x.into();
let p = format!("y = {:x}", y);
assert_eq!(p, "y = 02c5");
println!("y = {:x}", y);
}
/// Allows you to format a [Bits] as a binary string
/// ```
/// # use rust_hdl::core::bits::Bits;
/// let y = Bits::<16>::from(0b1011_0100_0010_0000);
/// println!("y = {:b}", y); // Prints y = 1011010000100000
/// ```
impl<const N: usize> Binary for Bits<N> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
for i in 0..N {
if self.get_bit(N - 1 - i) {
write!(f, "1")?;
} else {
write!(f, "0")?;
}
}
Ok(())
}
}
#[test]
fn test_print_as_binary() {
let x = Bits::<16>::from(0b_1011_0100_1000_0000);
let p = format!("x = {:b}", x);
assert_eq!(p, "x = 1011010010000000")
}
/// Allows you to format a [Bits] as a lowercase hex string
/// ```
/// # use rust_hdl::core::bits::Bits;
/// let y = Bits::<16>::from(0xcafe);
/// println!("y = {:x}", y); // Prints y = cafe
/// ```
impl<const N: usize> LowerHex for Bits<N> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let m: usize = N + (4 - (N % 4)) % 4; // Round up to an integer number of nibbles
let digits: usize = m / 4;
for digit in 0..digits {
let nibble: Bits<4> = self.get_bits(4 * (digits - 1 - digit));
let nibble_u8: LiteralType = nibble.into();
std::fmt::LowerHex::fmt(&nibble_u8, f)?;
}
Ok(())
}
}
#[test]
fn test_print_as_lowercase_hex() {
let x = Bits::<16>::from(0xcafe);
let p = format!("x = {:x}", x);
assert_eq!(p, "x = cafe");
}
/// Allows you to format a [Bits] as an uppercase hex string
/// ```
/// # use rust_hdl::core::bits::Bits;
/// let y = Bits::<16>::from(0xcafe);
/// println!("y = {:X}", y); // Prints y = CAFE
/// ```
impl<const N: usize> UpperHex for Bits<N> {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let m: usize = N + (4 - (N % 4)) % 4; // Round up to an integer number of nibbles
let digits: usize = m / 4;
for digit in 0..digits {
let nibble: Bits<4> = self.get_bits(4 * (digits - 1 - digit));
let nibble_u8: LiteralType = nibble.into();
std::fmt::UpperHex::fmt(&nibble_u8, f)?;
}
Ok(())
}
}
#[test]
fn test_print_as_uppercase_hex() {
let x = Bits::<16>::from(0xcafe);
let p = format!("x = {:X}", x);
assert_eq!(p, "x = CAFE");
}
/// Convenience function to construct [Bits] from an unsigned literal
/// Sometimes, you know you will be working with a value that is smaller than
/// 128 bits (the current maximum sized built-in unsigned integer in Rust).
/// In those cases, the [bits] function can make construction slightly
/// simpler.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<14> = bits(0xDEA);
/// assert_eq!("0dea", format!("{:x}", x))
/// ```
/// In most cases, it's easier to use `into`:
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<14> = 0xDEA.into();
/// assert_eq!("0dea", format!("{:x}", x))
/// ```
pub fn bits<const N: usize>(x: LiteralType) -> Bits<N> {
let t: Bits<N> = x.into();
t
}
/// The [ToBits] trait is used to provide a way to convert Rust standard unsigned
/// types (currently `u8, u16, u32, u64, u128`) into [Bits] of different lengths.
/// Note that RustHDL will panic if you attempt to convert an unsigned type into
/// a [Bits] that is too small to hold the value.
pub trait ToBits {
/// Convert the underlying type to a [Bits] of the specified size. Invoked
/// using
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<4> = 0xF_u8.to_bits();
///```
fn to_bits<const N: usize>(self) -> Bits<N>;
}
impl ToBits for u8 {
fn to_bits<const N: usize>(self) -> Bits<N> {
(self as LiteralType).into()
}
}
impl ToBits for u16 {
fn to_bits<const N: usize>(self) -> Bits<N> {
(self as LiteralType).into()
}
}
impl ToBits for u32 {
fn to_bits<const N: usize>(self) -> Bits<N> {
(self as LiteralType).into()
}
}
impl ToBits for u64 {
fn to_bits<const N: usize>(self) -> Bits<N> {
(self as LiteralType).into()
}
}
impl ToBits for usize {
fn to_bits<const N: usize>(self) -> Bits<N> {
(self as LiteralType).into()
}
}
impl ToBits for u128 {
fn to_bits<const N: usize>(self) -> Bits<N> {
Bits::<N>::from(BigUint::from(self))
}
}
/// Cast from one bit width to another with truncation or zero padding
/// The [bit_cast] function allows you to convert from one bit width
/// to another. It handles the different widths in the following simplified
/// manner:
/// - if casting to a narrower bit width, the most significant bits are
/// discarded until the new value fits into the specified bits
/// - if casting to a wider bit width, the most significant bits are
/// padded with zeros until the new value occupies the specified bits
/// This may seem a bit counterintuitive, but it fits logical circuitry
/// behavior. Narrowing is usually done by preserving the least significant
/// bits (so that the carry bits are discarded when adding, for example).
/// Widening is also usually done (for unsigned values) by zero extending
/// the most significant bits. The [bit_cast] operation does both of
/// these operations depending on the arguments.
///
/// First, an example of widening, in this case, an extra nibble is
/// added to the most significant bits, and is set to zero.
///```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<12> = bits(0xEAF);
/// let y : Bits<16> = bit_cast(x); // M = 16, N = 12
/// assert_eq!(y, bits::<16>(0x0EAF));
///```
///
/// In the second example, we downcast, this time, discarding the most
/// significant nibble.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<16> = bits(0xDEAF);
/// let y : Bits<12> = bit_cast(x); // M = 12, N = 16
/// assert_eq!(y, bits::<12>(0xEAF));
/// ```
///
/// Note that internally, you can [bit_cast] from an arbitrary bit length
/// to another arbitrary bit length without losing information because of
/// any internal Rust limit.
///
/// Note also that bit-casting does _not_ preserve signedness. Generally,
/// RustHDL follows hardware conventions that values are unsigned. If you
/// want to work with signed bit vectors, use [Signed] instead.
pub fn bit_cast<const M: usize, const N: usize>(x: Bits<N>) -> Bits<M> {
match x {
Bits::Short(t) => {
let t: ShortType = t.into();
let t = if M < N {
t & ShortBitVec::<M>::mask().short()
} else {
t
};
let k: Bits<M> = (t as LiteralType).into();
k
}
Bits::Long(t) => {
if M > SHORT_BITS {
Bits::Long(t.resize())
} else {
let k: ShortType = t.into();
Bits::Short(k.into())
}
}
}
}
#[doc(hidden)]
impl<const N: usize> Into<VCDValue> for Bits<N> {
fn into(self) -> VCDValue {
if N == 1 {
if self.get_bit(0) {
VCDValue::Single(vcd::Value::V1)
} else {
VCDValue::Single(vcd::Value::V0)
}
} else {
let mut x = vec![];
for i in 0..N {
if self.get_bit(N - 1 - i) {
x.push(vcd::Value::V1)
} else {
x.push(vcd::Value::V0)
}
}
VCDValue::Vector(x)
}
}
}
#[test]
fn test_bits_from_int_via_bits() {
let x: Bits<23> = bits(23);
let u: LiteralType = x.into();
assert_eq!(u, 23);
}
impl<const N: usize> Bits<N> {
#[inline(always)]
/// The [any] function returns true if any of the
/// individual bits are true, and false otherwise.
/// This reduction operation is equivalent to a logical
/// OR of all the bits in the vector.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<14> = bits(0xDEA);
/// assert_eq!(x.any(), true);
/// let y : Bits<14> = Bits::default();
/// assert_eq!(y.any(), false);
/// ```
pub fn any(&self) -> bool {
match self {
Bits::Short(x) => x.any(),
Bits::Long(x) => x.any(),
}
}
#[inline(always)]
/// The [all] function returns true if all of the individual
/// bits are true, and false otherwise. This reduction
/// operation is equivalent to a logical AND of all the bits
/// in the vector.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<14> = bits(0xDEA);
/// assert_eq!(x.all(), false);
/// let y : Bits<14> = bits(0x3FFF);
/// assert_eq!(y.all(), true);
/// ```
pub fn all(&self) -> bool {
match self {
Bits::Short(x) => x.all(),
Bits::Long(x) => x.all(),
}
}
#[inline(always)]
/// The [xor] function computes the exclusive OR of all
/// the bits in the vector. This is equivalent to counting
/// the number of ones. If the number is odd, the XOR will
/// be true. If even, it will be false.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<12> = bits(0b1100_0100_1100);
/// assert_eq!(x.xor(), true);
/// let y: Bits<12> = bits(0b1100_0110_1100);
/// assert_eq!(y.xor(), false);
/// ```
pub fn xor(&self) -> bool {
match self {
Bits::Short(x) => x.xor(),
Bits::Long(x) => x.xor(),
}
}
/// The [index] function is used when a [Bits] is going
/// to be used to index into an array or some other bit vector.
/// This is typically a very specialized hardware operation,
/// so there are limited cases in which it can be used. Also,
/// there is an assumption that the [Bits] being used as
/// an index is sufficiently small to fit in a natural word (assume 32 bits, here
/// for safety). In practice, that means, that if you are
/// indexing into a register using some other register/value,
/// the _length_ of the register is limited to a few billion bits.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<12> = bits(0b1100_0100_1100);
/// assert_eq!(x.index(), 0b1100_0100_1100_usize);
/// ```
pub fn index(&self) -> usize {
match self {
Bits::Short(x) => x.short() as usize,
Bits::Long(_x) => panic!("Cannot map long bit vector to index type"),
}
}
#[inline(always)]
/// Return the number of bits in the current [Bits].
/// Because this is determined at compile time, it is
/// of limited use as a runtime function, but is there
/// nonetheless.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<14> = Bits::default();
/// assert_eq!(x.len(), 14);
/// ```
pub fn len(&self) -> usize {
N
}
/// Compute the number of possible values that a [Bits]
/// can take. This is basically 2 raised to the Nth
/// power. Because the result is returned as a [usize],
/// you must be careful, since this can easily overflow.
/// A [Bits<256>] for example, cannot represent [count]
/// on a normal 64 bit machine.
/// ```
/// # use rust_hdl::core::prelude::*;
/// assert_eq!(Bits::<16>::count(), 1 << 16);
/// ```
pub fn count() -> u128 {
1 << N
}
#[inline(always)]
/// Extract the [index] bit from the given [Bits]. This will
/// cause a runtime panic if the [index] bit is out of range
/// of the width of the bitvector.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<14> = bits(0b10110);
/// assert_eq!(x.get_bit(0), false);
/// assert_eq!(x.get_bit(1), true);
/// assert_eq!(x.get_bit(2), true); // You get the idea
/// ```
pub fn get_bit(&self, index: usize) -> bool {
assert!(index < N);
match self {
Bits::Short(x) => x.get_bit(index),
Bits::Long(x) => x.get_bit(index),
}
}
/// Replace the given bit of a [Bits] with a new bit value.
/// This method leaves the original value alone, and returns
/// a new [Bits] with all bits except the designated one left
/// alone.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<16> = bits(0b1100_0000);
/// let x = x.replace_bit(0, true);
/// let x = x.replace_bit(7, false);
/// assert_eq!(x, bits(0b0100_0001));
/// ```
pub fn replace_bit(&self, index: usize, val: bool) -> Self {
assert!(index < N);
match self {
Bits::Short(x) => Bits::Short(x.replace_bit(index, val)),
Bits::Long(x) => Bits::Long(x.replace_bit(index, val)),
}
}
#[inline(always)]
/// Return a subset of bits from a [Bits] value, with a given offset.
/// To preserve the feasibility of representing this in hardware, the width
/// of the result must be fixed (the argument [M]), and only the offset
/// can be computed.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<40> = bits(0xDEAD_BEEF_CA);
/// let y = x.get_bits::<32>(8);
/// assert_eq!(y, bits(0xDEAD_BEEF))
/// ```
pub fn get_bits<const M: usize>(&self, index: usize) -> Bits<M> {
assert!(index <= N);
bit_cast::<M, N>(*self >> index as LiteralType)
}
#[inline(always)]
/// Set a group of bits in a value. This operation modifies the
/// value in place.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let mut x: Bits<40> = bits(0xDEAD_BEEF_CA);
/// x.set_bits::<16>(8, bits(0xCAFE));
/// assert_eq!(x, bits(0xDEAD_CAFE_CA));
/// ```
pub fn set_bits<const M: usize>(&mut self, index: usize, rhs: Bits<M>) {
assert!(index <= N);
assert!(index + M <= N);
let mask = !(bit_cast::<N, M>(Bits::<M>::mask()) << index as LiteralType);
let masked = *self & mask;
let replace = bit_cast::<N, M>(rhs) << index as LiteralType;
*self = masked | replace
}
#[inline(always)]
/// Returns a [Bits] value that contains [N] ones.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x = Bits::<40>::mask();
/// assert_eq!(x, bits(0xFF_FFFF_FFFF));
/// ```
pub fn mask() -> Bits<N> {
if N <= SHORT_BITS {
Bits::Short(ShortBitVec::<N>::mask())
} else {
Bits::Long([true; N].into())
}
}
/// Returns the width in bits of the [BitVec].
/// Note that this is the number of bits allocated.
/// It does not depend on the value at all.
/// ```
/// # use rust_hdl::core::prelude::*;
/// assert_eq!(Bits::<40>::width(), 40);
/// ```
pub const fn width() -> usize {
N
}
/// Convert [Bits] to an [u8].
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<6> = 12.into();
/// let y = x.to_u8();
/// assert_eq!(y, 12_u8);
/// ```
/// Note that this will panic if the width of the
/// bitvector is larger than 8 bits.
/// ```should_panic
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<12> = 0xADE.into();
/// let y = x.to_u8(); // Panics - too many bits
/// ```
pub fn to_u8(self) -> u8 {
assert!(N <= 8, "Cannot convert Bits::<{}> to u8 - too many bits", N);
let x: LiteralType = self.into();
x as u8
}
/// Convert [Bits] to an [u16].
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<12> = 12.into();
/// let y = x.to_u16();
/// assert_eq!(y, 12_u16);
/// ```
/// Note that this will panic if the width of the
/// bitvector is larger than 16 bits.
/// ```should_panic
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<20> = 0xADE.into();
/// let y = x.to_u16(); // Panics - too many bits
/// ```
pub fn to_u16(self) -> u16 {
assert!(
N <= 16,
"Cannot convert Bits::<{}> to u16 - too many bits",
N
);
let x: LiteralType = self.into();
x as u16
}
/// Convert [Bits] to an [u32].
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<24> = 12.into();
/// let y = x.to_u32();
/// assert_eq!(y, 12_u32);
/// ```
/// Note that this will panic if the width of the
/// bitvector is larger than 32 bits.
/// ```should_panic
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<40> = 0xADE.into();
/// let y = x.to_u32(); // Panics - too many bits
/// ```
pub fn to_u32(self) -> u32 {
assert!(
N <= 32,
"Cannot convert Bits::<{}> to u32 - too many bits",
N
);
let x: LiteralType = self.into();
x as u32
}
/// Convert [Bits] to an [u64].
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<40> = 12.into();
/// let y = x.to_u64();
/// assert_eq!(y, 12_u64);
/// ```
/// Note that this will panic if the width of the
/// bitvector is larger than 64 bits.
/// ```should_panic
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<80> = 0xADE.into();
/// let y = x.to_u64(); // Panics - too many bits
/// ```
pub fn to_u64(self) -> u64 {
assert!(
N <= 64,
"Cannot convert Bits::<{}> to u64 - too many bits",
N
);
let x: LiteralType = self.into();
x as u64
}
/// Convert [Bits] to an [u128].
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<80> = 12.into();
/// let y = x.to_u128();
/// assert_eq!(y, 12_u128);
/// ```
/// Note that this will panic if the width of the
/// bitvector is larger than 128 bits.
/// ```should_panic
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<140> = 0xADE.into();
/// let y = x.to_u128(); // Panics - too many bits
/// ```
pub fn to_u128(self) -> u128 {
match self {
Bits::Short(x) => x.to_u128(),
Bits::Long(x) => x.to_u128(),
}
}
}
impl From<bool> for Bits<1> {
#[inline(always)]
/// Convenience method that allows you to convert
/// a boolean into a single bit-width [Bits].
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<1> = true.into();
/// assert_eq!(x, bits(1))
/// ```
fn from(x: bool) -> Self {
if x {
1.into()
} else {
0.into()
}
}
}
impl Into<bool> for Bits<1> {
#[inline(always)]
/// Convenience method for converting a 1-bit
/// width [Bits] value into a boolean value.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<1> = bits(1);
/// let y : bool = x.into();
/// assert!(y)
/// ```
fn into(self) -> bool {
self.get_bit(0)
}
}
/// Convert from [LiteralType] to [Bits]. Because of some restrictions on
/// how Rust's type inference works, when you work with unsized
/// literals (e.g., `x = 3`), there must either be a unique integer type
/// that can fit the expression, or it will default to `i32`. Unfortunately,
/// in general, [Bits] are used to represent unsigned types. The upshot
/// of all this is that RustHDL selects one unsigned integer type to represent
/// literals. Although not ideal, RustHDL uses a [LiteralType] (currently 'u64') to represent literals
/// so as to make HDL expressions close to Verilog or VHDL. This choice should not affect
/// any hardware implementation, as hardware registers need to be of [Bits] type.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<16> = 0xDEAD.into(); // This is interpreteed as a 128 bit constant by Rust
/// ```
/// This example is the largest bit width literal you can express using current
/// edition Rust:
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<128> = 0xDEADBEEF_CAFEBABE_1234ABCD_00005EA1_u128.to_bits();
/// ```
/// From a safety perspective, RustHDL will panic if the argument is too large to fit
/// into the bit vector. Thus, this example will panic, since the literal cannot be
/// fit into 16 bits without truncation:
/// ```should_panic
/// # use rust_hdl::core::prelude::*;
/// let x: Bits<16> = 0xDEADBEEF.into(); // This will panic!
/// ```
impl<const N: usize> From<LiteralType> for Bits<N> {
fn from(x: LiteralType) -> Self {
if N > SHORT_BITS {
let y: BitVec<N> = x.into();
Bits::Long(y)
} else {
assert!(
x <= ShortBitVec::<N>::max_legal(),
"Value 0x{:x} does not fit into bitvector of length {}",
x,
N
);
Bits::Short((x as ShortType).into())
}
}
}
impl<const N: usize> From<Wrapping<LiteralType>> for Bits<N> {
fn from(x: Wrapping<LiteralType>) -> Self {
x.0.into()
}
}
/// Convert a [Bits] back to [u128]. Until Rust supports larger integers, the [u128] is
/// the largest integer type you can use without resorting to [BigUint]. RustHDL will panic
/// if you try to convert a [Bits] that is more than 128 bits to a literal. Even if the
/// value in the bitvector would fit.
///```
///# use rust_hdl::core::prelude::*;
/// let x: Bits<16> = 0xDEAD.into();
/// let y: u128 = x.to_u128();
/// assert_eq!(y, 0xDEAD);
///```
///The following will panic even through the literal value stored in the 256 bit vector
///is less than 128 bits.
///```should_panic
///# use rust_hdl::core::prelude::*;
///let x : Bits<256> = 42.into();
///let y: u128 = x.to_u128(); // Panics!
/// ```
impl<const N: usize> From<Bits<N>> for LiteralType {
fn from(x: Bits<N>) -> Self {
assert!(N <= LITERAL_BITS);
match x {
Bits::Short(t) => {
let p: ShortType = t.into();
p as LiteralType
}
Bits::Long(t) => t.into(),
}
}
}
#[inline(always)]
#[doc(hidden)]
fn binop<Tshort, TLong, const N: usize>(
a: Bits<N>,
b: Bits<N>,
short_op: Tshort,
long_op: TLong,
) -> Bits<N>
where
Tshort: Fn(ShortBitVec<N>, ShortBitVec<N>) -> ShortBitVec<N>,
TLong: Fn(BitVec<N>, BitVec<N>) -> BitVec<N>,
{
match a {
Bits::Short(x) => match b {
Bits::Short(y) => Bits::Short(short_op(x, y)),
_ => {
unreachable!()
}
},
Bits::Long(x) => match b {
Bits::Long(y) => Bits::Long(long_op(x, y)),
_ => {
unreachable!()
}
},
}
}
macro_rules! op {
($func: ident, $method: ident, $op: tt) => {
#[doc(hidden)]
impl<const N: usize> std::ops::$method<Bits<N>> for Bits<N> {
type Output = Bits<N>;
#[inline(always)]
fn $func(self, rhs: Bits<N>) -> Self::Output {
binop(self, rhs, |a, b| a $op b, |a, b| a $op b)
}
}
impl<const N: usize> std::ops::$method<LiteralType> for Bits<N> {
type Output = Bits<N>;
fn $func(self, rhs: LiteralType) -> Self::Output {
binop(self, rhs.into(), |a, b| a $op b, |a, b| a $op b)
}
}
impl<const N: usize> std::ops::$method<Bits<N>> for LiteralType {
type Output = Bits<N>;
#[inline(always)]
fn $func(self, rhs: Bits<N>) -> Self::Output {
binop(self.into(), rhs.into(), |a, b| a $op b, |a, b| a $op b)
}
}
}
}
op!(add, Add, +);
op!(sub, Sub, -);
op!(bitor, BitOr, |);
op!(bitand, BitAnd, &);
op!(bitxor, BitXor, ^);
op!(shr, Shr, >>);
op!(shl, Shl, <<);
/// Construct a default [Bits] - i.e., a zero bit vector of length N.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<200> = Default::default();
/// assert_eq!(x, bits(0));
/// ```
impl<const N: usize> Default for Bits<N> {
fn default() -> Bits<N> {
bits::<N>(0)
}
}
/// Bitwise inversion of a [Bits] vector
/// The `!` operator will invert each bit in a [Bits] vector.
/// ```
/// # use rust_hdl::core::prelude::*;
/// let x : Bits<16> = bits(0xAAAA);
/// let y = !x;
/// assert_eq!(y, bits(0x5555))
/// ```
impl<const N: usize> std::ops::Not for Bits<N> {
type Output = Bits<N>;
fn not(self) -> Self::Output {
match self {
Bits::Short(x) => Bits::Short(!x),
Bits::Long(x) => Bits::Long(!x),
}
}
}
#[doc(hidden)]
impl<const N: usize> Ord for Bits<N> {
fn cmp(&self, other: &Bits<N>) -> Ordering {
self.partial_cmp(other).unwrap()
}
}
#[doc(hidden)]
impl<const N: usize> PartialOrd<Bits<N>> for LiteralType {
fn partial_cmp(&self, other: &Bits<N>) -> Option<Ordering> {
let self_as_bits: Bits<N> = (*self).into();
self_as_bits.partial_cmp(other)
}
}
#[doc(hidden)]
impl<const N: usize> PartialOrd<LiteralType> for Bits<N> {
fn partial_cmp(&self, other: &LiteralType) -> Option<Ordering> {
let other_as_bits: Bits<N> = (*other).into();
self.partial_cmp(&other_as_bits)
}
}
#[doc(hidden)]
impl<const N: usize> PartialOrd<Bits<N>> for Bits<N> {
#[inline(always)]
fn partial_cmp(&self, other: &Bits<N>) -> Option<Ordering> {
match self {
Bits::Short(x) => match other {
Bits::Short(y) => x.partial_cmp(y),
_ => panic!("Short Long case"),
},
Bits::Long(x) => match other {
Bits::Long(y) => x.partial_cmp(y),
_ => panic!("Long short case"),
},
}
}
}
#[doc(hidden)]
impl<const N: usize> PartialEq<Bits<N>> for Bits<N> {
#[inline(always)]
fn eq(&self, other: &Bits<N>) -> bool {
match self {
Bits::Short(x) => match other {
Bits::Short(y) => x == y,
_ => panic!("Short Long case"),
},
Bits::Long(x) => match other {
Bits::Long(y) => x == y,
_ => panic!("Long Short case"),
},
}
}
}
#[doc(hidden)]
impl<const N: usize> PartialEq<LiteralType> for Bits<N> {
fn eq(&self, other: &LiteralType) -> bool {
let other_as_bits: Bits<N> = (*other).into();
self.eq(&other_as_bits)
}
}
#[doc(hidden)]
impl<const N: usize> PartialEq<Bits<N>> for LiteralType {
fn eq(&self, other: &Bits<N>) -> bool {
let self_as_bits: Bits<N> = (*self).into();
self_as_bits.eq(other)
}
}
#[doc(hidden)]
impl PartialEq<bool> for Bits<1> {
#[inline(always)]
fn eq(&self, other: &bool) -> bool {
self.get_bit(0) == *other
}
}
#[doc(hidden)]
impl PartialEq<Bits<1>> for bool {
fn eq(&self, other: &Bits<1>) -> bool {
*self == other.get_bit(0)
}
}
#[doc(hidden)]
impl<const N: usize> Eq for Bits<N> {}
#[doc(hidden)]
impl<const N: usize> std::hash::Hash for Bits<N> {
fn hash<H: Hasher>(&self, state: &mut H) {
match self {
Bits::Short(t) => t.hash(state),
Bits::Long(t) => t.hash(state),
}
}
}
#[doc(hidden)]
impl<const N: usize> std::ops::Add<bool> for Bits<N> {
type Output = Bits<N>;
fn add(self, rhs: bool) -> Self::Output {
if rhs {
self + Bits::<N>::from(1)
} else {
self
}
}
}
#[cfg(test)]
mod tests {
use super::{bit_cast, clog2, Bits};
use crate::core::bits::random_bits;
use crate::core::bits::{LiteralType, ToBits};
use num_bigint::BigUint;
use num_traits::One;
use seq_macro::seq;
use std::num::Wrapping;
#[test]
fn test_get_bits_section() {
let x: Bits<40> = 0xD_ADBE_EFCA.into();
let y = x.get_bits::<32>(8).to_u32();
let answer = 0xDAD_BEEF;
assert_eq!(y, answer);
}
#[test]
fn test_short_from_u8() {
let x: Bits<4> = 15.into();
let y: LiteralType = x.into();
assert_eq!(y, 15 & (0x0F));
}
#[test]
fn test_short_from_u16() {
let x: Bits<12> = 1432.into();
let y: LiteralType = x.into();
assert_eq!(y, 1432 & (0x0FFF));
}
#[test]
fn test_short_from_u32() {
let x: Bits<64> = 12434234.into();
let y: LiteralType = x.into();
assert_eq!(y, 12434234);
}
#[test]
fn test_from_u32() {
let x: Bits<64> = 0xFFFF_FFFF.into();
let y: LiteralType = x.into();
assert_eq!(y, 0xFFFF_FFFF);
}
#[test]
fn or_test() {
let a: Bits<32> = 45.into();
let b: Bits<32> = 10395.into();
let c = a | b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 45 | 10395)
}
#[test]
fn and_test() {
let a: Bits<32> = 45.into();
let b: Bits<32> = 10395.into();
let c = a & b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 45 & 10395)
}
#[test]
fn xor_test() {
let a: Bits<32> = 45.into();
let b: Bits<32> = 10395.into();
let c = a ^ b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 45 ^ 10395)
}
#[test]
fn not_test() {
let a: Bits<32> = 45.into();
let c = !a;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, (!45_u32) as LiteralType);
}
#[test]
fn shr_test() {
let a: Bits<32> = 10395.into();
let c: Bits<32> = a >> 4;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 10395 >> 4);
}
#[test]
fn shr_test_pair() {
let a: Bits<32> = 10395.into();
let b: Bits<32> = 4.into();
let c = a >> b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 10395 >> 4);
}
#[test]
fn shl_test() {
let a: Bits<32> = 10395.into();
let c = a << 24;
let c_u32 = c.to_u32();
assert_eq!(c_u32, 10395 << 24);
}
#[test]
fn shl_test_pair() {
let a: Bits<32> = 10395.into();
let b: Bits<32> = 4.into();
let c = a << b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 10395 << 4);
}
#[test]
fn add_works() {
let a: Bits<32> = 10234.into();
let b: Bits<32> = 19423.into();
let c = a + b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 10234 + 19423);
}
#[test]
fn add_int_works() {
let a: Bits<32> = 10234.into();
let b = 19423;
let c: Bits<32> = a + b;
let c_u32: LiteralType = c.into();
assert_eq!(c_u32, 10234 + 19423);
}
#[test]
fn add_works_with_overflow() {
let x = 2_042_102_334_u32;
let y = 2_942_142_512_u32;
let a: Bits<32> = x.to_bits();
let b: Bits<32> = y.to_bits();
let c = a + b;
let c_u32 = c.to_u32();
assert_eq!(Wrapping(c_u32), Wrapping(x) + Wrapping(y));
}
#[test]
fn sub_works() {
let x = 2_042_102_334_u32;
let y = 2_942_142_512_u32;
let a: Bits<32> = x.to_bits();
let b: Bits<32> = y.to_bits();
let c = a - b;
let c_u32 = c.to_u32();
assert_eq!(Wrapping(c_u32), Wrapping(x) - Wrapping(y));
}
#[test]
fn sub_int_works() {
let x = 2_042_102_334_u32;
let y = 2_942_142_512;
let a: Bits<32> = x.to_bits();
let c = a - y;
let c_u32 = c.to_u32();
assert_eq!(Wrapping(c_u32), Wrapping(x) - Wrapping(y as u32));
}
#[test]
fn eq_works() {
let x = 2_032_142_351;
let y = 2_942_142_512;
let a: Bits<32> = x.into();
let b: Bits<32> = x.into();
let c: Bits<32> = y.into();
assert_eq!(a, b);
assert_ne!(a, c)
}
#[test]
fn mask_works() {
let a: Bits<48> = 0xFFFF_FFFF_FFFF.into();
let b = Bits::<48>::mask();
assert_eq!(a, b);
let a: Bits<16> = 0xFFFF.into();
let b = Bits::<16>::mask();
assert_eq!(a, b)
}
#[test]
fn get_bit_works() {
// 0101 = 5
let a: Bits<48> = 0xFFFF_FFFF_FFF5.into();
assert!(a.get_bit(0));
assert!(!a.get_bit(1));
assert!(a.get_bit(2));
assert!(!a.get_bit(3));
let c: Bits<5> = 3.into();
assert!(!a.get_bit(c.index()));
}
#[test]
fn test_bit_cast_short() {
let a: Bits<8> = 0xFF.into();
let b: Bits<16> = bit_cast(a);
assert_eq!(b, 0xFF);
let c: Bits<4> = bit_cast(a);
assert_eq!(c, 0xF);
}
#[test]
fn test_bit_cast_long() {
let a: Bits<48> = 0xdead_cafe_babe.into();
let b: Bits<44> = bit_cast(a);
assert_eq!(b, 0xead_cafe_babe);
let b: Bits<32> = bit_cast(a);
assert_eq!(b, 0xcafe_babe);
}
#[test]
fn test_bit_extract_long() {
let a: Bits<48> = 0xdead_cafe_babe.into();
let b: Bits<44> = a.get_bits(4);
assert_eq!(b, 0xdead_cafe_bab);
let b: Bits<32> = a.get_bits(16);
assert_eq!(b, 0xdead_cafe);
}
#[test]
fn test_set_bit() {
let a: Bits<48> = 0xdead_cafe_babe.into();
let mut b = a;
for i in 4..8 {
b = b.replace_bit(i, false)
}
assert_eq!(b, 0xdead_cafe_ba0e);
}
#[test]
fn test_set_bits() {
let a: Bits<16> = 0xdead.into();
let b: Bits<4> = 0xf.into();
let mut c = a.clone();
c.set_bits(4, b);
assert_eq!(c, 0xdefd);
let a: Bits<48> = 0xdead_cafe_babe.into();
let b: Bits<8> = 0xde.into();
let mut c = a.clone();
c.set_bits(16, b);
assert_eq!(c, 0xdead_cade_babe);
}
#[test]
fn test_constants_and_bits() {
let a: Bits<16> = 0xdead.into();
let b = a + 1;
let c = 1 + a;
println!("{:x}", b);
assert_eq!(b, 0xdeae);
assert_eq!(b, c);
}
#[test]
fn test_clog2() {
const A_WIDTH: usize = clog2(250);
let a: Bits<{ A_WIDTH }> = 153.into();
println!("{:x}", a);
assert_eq!(a.len(), 8);
assert_eq!(clog2(1024), 10);
}
#[test]
fn test_clog2_inline() {
const A_WIDTH: usize = clog2(1000);
let a: Bits<A_WIDTH> = 1023.into();
assert_eq!(a.len(), 10);
}
#[test]
fn test_default() {
const N: usize = 128;
let a = Bits::<N>::default();
assert_eq!(a, 0);
}
#[test]
fn test_get_bits() {
fn get_bits_test<const N: usize, const M: usize>() {
for offset in 0_usize..N {
let y: Bits<N> = random_bits();
let z = y.get_bits::<M>(offset);
let yb: BigUint = y.into();
let yb = (yb >> offset) & ((BigUint::one() << M) - BigUint::one());
let zb: BigUint = z.into();
assert_eq!(zb, yb);
}
}
seq!(N in 0..16 {
get_bits_test::<8, N>();
});
seq!(N in 0..64 {
get_bits_test::<32, N>();
});
seq!(N in 0..65 {
get_bits_test::<64, N>();
});
seq!(N in 0..300 {
get_bits_test::<256, N>();
});
seq!(N in 0..150 {
get_bits_test::<125, N>();
});
}
#[test]
fn test_bitcast() {
fn bitcast_test<const N: usize, const M: usize>() {
let y: Bits<N> = random_bits();
let z = bit_cast::<M, N>(y);
let yb: BigUint = y.into();
let zb = yb & ((BigUint::one() << M) - BigUint::one());
let zc: BigUint = z.into();
assert_eq!(zb, zc);
}
fn bitcast_test_set<const M: usize>() {
bitcast_test::<M, 1>();
bitcast_test::<M, 8>();
bitcast_test::<M, 16>();
bitcast_test::<M, 32>();
bitcast_test::<M, 64>();
bitcast_test::<M, 128>();
bitcast_test::<M, 256>();
}
bitcast_test_set::<1>();
bitcast_test_set::<8>();
bitcast_test_set::<16>();
bitcast_test_set::<32>();
bitcast_test_set::<64>();
bitcast_test_set::<128>();
bitcast_test_set::<256>();
}
#[test]
fn test_any() {
seq!(N in 1..150 {
for _rep in 0..10 {
let y: Bits<N> = random_bits();
let z : BigUint = y.into();
let y_any = y.any();
let z_any = z.count_ones() != 0;
assert_eq!(y_any, z_any)
}
let y = Bits::<N>::default();
assert_eq!(y.any(), false);
});
}
#[test]
fn test_all() {
seq!(N in 1..150 {
for _rep in 0..10 {
let y: Bits<N> = random_bits();
let z : BigUint = y.into();
let y_all = y.all();
let z_all = z.count_ones() == N as u64;
assert_eq!(y_all, z_all)
}
let y = Bits::<N>::mask();
assert_eq!(y.all(), true);
});
}
#[test]
fn test_shl() {
seq!(N in 1..150 {
for l in 0..N {
let y: Bits<N> = random_bits();
let z: Bits<N> = y << l;
let y1 : BigUint = y.into();
let mask : BigUint = (BigUint::one() << N) - BigUint::one();
let z1 = (y1 << l) & mask;
let convert : BigUint = z.into();
assert_eq!(z1, convert)
}
});
}
#[test]
fn test_shr() {
seq!(N in 1..150 {
for l in 0..N {
let y: Bits<N> = random_bits();
let z: Bits<N> = y >> l;
let y1 : BigUint = y.into();
let mask : BigUint = (BigUint::one() << N) - BigUint::one();
let z1 = (y1 >> l) & mask;
let convert : BigUint = z.into();
assert_eq!(z1, convert)
}
});
}
macro_rules! test_op_with_values {
($func: ident) => {
seq!(N in 1..150 {
for _iters in 0..10 {
let y: Bits<N> = random_bits();
let z: Bits<N> = random_bits();
let v1_as_bint : BigUint = y.into();
let v2_as_bint : BigUint = z.into();
let mask : BigUint = (BigUint::one() << N) - BigUint::one();
let (lib_answer, biguint_answer) = $func(y, z, v1_as_bint, v2_as_bint, mask);
let convert : BigUint = lib_answer.into();
assert_eq!(biguint_answer, convert)
}
});
}
}
#[test]
fn test_add() {
fn add<const N: usize>(
y: Bits<N>,
z: Bits<N>,
y1: BigUint,
z1: BigUint,
mask: BigUint,
) -> (Bits<N>, BigUint) {
(y + z, (y1 + z1) & mask)
}
test_op_with_values!(add);
}
#[test]
fn test_sub() {
fn sub<const N: usize>(
y: Bits<N>,
z: Bits<N>,
y1: BigUint,
z1: BigUint,
mask: BigUint,
) -> (Bits<N>, BigUint) {
if z1 <= y1 {
(y - z, (y1 - z1))
} else {
(y - z, mask + BigUint::one() + y1 - z1)
}
}
test_op_with_values!(sub);
}
#[test]
fn test_bitor() {
fn bor<const N: usize>(
y: Bits<N>,
z: Bits<N>,
y1: BigUint,
z1: BigUint,
mask: BigUint,
) -> (Bits<N>, BigUint) {
(y | z, (y1 | z1) & mask)
}
test_op_with_values!(bor);
}
#[test]
fn test_bitand() {
fn band<const N: usize>(
y: Bits<N>,
z: Bits<N>,
y1: BigUint,
z1: BigUint,
mask: BigUint,
) -> (Bits<N>, BigUint) {
(y & z, (y1 & z1) & mask)
}
test_op_with_values!(band);
}
#[test]
fn test_bitxor() {
fn bxor<const N: usize>(
y: Bits<N>,
z: Bits<N>,
y1: BigUint,
z1: BigUint,
mask: BigUint,
) -> (Bits<N>, BigUint) {
(y ^ z, (y1 ^ z1) & mask)
}
test_op_with_values!(bxor);
}
#[test]
fn test_not() {
fn not<const N: usize>(
y: Bits<N>,
_z: Bits<N>,
y1: BigUint,
_z1: BigUint,
mask: BigUint,
) -> (Bits<N>, BigUint) {
(!y, (y1 ^ mask))
}
test_op_with_values!(not);
}
macro_rules! test_cmp_with_values {
($func: ident) => {
seq!(N in 1..256 {
for _iters in 0..10 {
let y: Bits<N> = random_bits();
let z: Bits<N> = random_bits();
let v1_as_bint : BigUint = y.into();
let v2_as_bint : BigUint = z.into();
let (lib_answer, biguint_answer) = $func(y, z, v1_as_bint, v2_as_bint);
assert_eq!(lib_answer, biguint_answer)
}
});
}
}
#[test]
fn test_lt() {
fn lt<const N: usize>(y: Bits<N>, z: Bits<N>, y1: BigUint, z1: BigUint) -> (bool, bool) {
(y < z, y1 < z1)
}
test_cmp_with_values!(lt);
}
#[test]
fn test_le() {
fn le<const N: usize>(y: Bits<N>, z: Bits<N>, y1: BigUint, z1: BigUint) -> (bool, bool) {
(y <= z, y1 <= z1)
}
test_cmp_with_values!(le);
}
#[test]
fn test_eq() {
fn eq<const N: usize>(y: Bits<N>, z: Bits<N>, y1: BigUint, z1: BigUint) -> (bool, bool) {
(y == z, y1 == z1)
}
test_cmp_with_values!(eq);
}
#[test]
fn test_neq() {
fn neq<const N: usize>(y: Bits<N>, z: Bits<N>, y1: BigUint, z1: BigUint) -> (bool, bool) {
(y != z, y1 != z1)
}
test_cmp_with_values!(neq);
}
#[test]
fn test_ge() {
fn ge<const N: usize>(y: Bits<N>, z: Bits<N>, y1: BigUint, z1: BigUint) -> (bool, bool) {
(y >= z, y1 >= z1)
}
test_cmp_with_values!(ge);
}
#[test]
fn test_gt() {
fn gt<const N: usize>(y: Bits<N>, z: Bits<N>, y1: BigUint, z1: BigUint) -> (bool, bool) {
(y > z, y1 > z1)
}
test_cmp_with_values!(gt);
}
}
/// A type alias for a simple bool. You can use them interchangeably.
pub type Bit = bool;
/// Multipliers are special, so we only implement multipliers that we think are
/// synthesizable. In this case, we implement a 16 x 16 bit multiplier
/// which yields a 32 bit result.
impl std::ops::Mul<Bits<16>> for Bits<16> {
type Output = Bits<32>;
fn mul(self, rhs: Bits<16>) -> Self::Output {
let x = match self {
Bits::Short(x) => x.short(),
Bits::Long(_) => {
panic!("unreachable!")
}
};
let y = match rhs {
Bits::Short(x) => x.short(),
Bits::Long(_) => {
panic!("unreachable!")
}
};
Bits::Short(ShortBitVec::from(x * y))
}
}