1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
use crate::core::bits::Bits;
use crate::core::signed::Signed;
use num_bigint::{BigInt, Sign};
use std::fmt::{Display, Formatter, LowerHex};
/// The BlackBox struct provides a way to wrap a blackbox,
/// externally provided IP core.
///
/// You will frequently in the world of FPGA firmware need to
/// wrap an external IP core that provides some functionality
/// you cannot implement yourself. For example, an analog
/// clock driver circuit that takes a double ended clock and
/// converts it to a single ended clock. Your synthesis tools
/// may be smart enough to infer such a device, but most likely
/// they will need help. That is where a black box references
/// come in. Think of it as a link reference
/// to an external library. Assuming you are going to validate
/// the code using `yosys`, you will need to satisfy a few additional
/// constraints.
///
/// 1. You must provide a black box declaration for any module that
/// is external to your RustHDL firmware, or `yosys` will fail to validate
/// the resulting firmware.
/// 2. You must annotate that black box declaration in such a way that
/// `yosys` knows the module is externally defined.
/// 3. RustHDL does not currently have the ability to dynamically rename
/// conflicting instances of black box firmware. So you can only include
/// one instance of each black box firmware in your design. This is generally
/// _not_ what you want, and the [Wrapper] struct provides a better way
/// to wrap a black box core (with some slight tradeoffs).
///
/// To use the [BlackBox] variant, you will need to provide a custom
/// implementation of the [hdl] function in the [Logic] trait. This
/// is fairly straightforward to do, so lets look at some examples.
///
/// Example
/// Let's imagine we have a module that represents a custom
/// piece of hardware that takes a differential clock from
/// outside the FPGA, and converts into a single ended clock
/// to drive logic. This is clearly going to be custom analog
/// circuitry, so it's natural that we need to wrap an external
/// black box primitive to get that functionality.
///
/// The [BlackBox] variant does not allow much flexibility. Our
/// RustHDL struct that describes the external IP must match
/// the underlying Verilog exactly, or the included IP will not
/// work correctly. For the clock buffer, we have a Verilog
/// definition from the manufacturer that looks like this
/// ```verilog
/// module IBUFDS(I, B, O);
/// input I;
/// input B;
/// output O;
/// endmodule
/// ```
///
/// It's succinct, but the argument names are pretty terse.
/// Unfortunately, we can't remap them or make it more ergonomic
/// with a [BlackBox]. For those types of operations, we need
/// to use a [Wrapper]. For now, we start with a struct to
/// describe the circuit. Note that at least the name of the
/// RustHDL struct does not have to be the same as the black box
/// IP core.
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
/// pub struct ClockDriver {
/// pub I: Signal<In, Clock>,
/// pub B: Signal<In, Clock>,
/// pub O: Signal<Out, Clock>,
/// }
/// ```
/// We will use the [LogicBlock] derive macro to add the [Logic]
/// trait to our circuit (so RustHDL can work with it), and the
/// [Default] trait as well, to make it easy to use.
/// The [Logic] trait for this circuit will need to be implemented
/// by hand.
/// ```rust
/// # use rust_hdl::core:: prelude::*;
/// # #[derive(LogicBlock, Default)]
/// # pub struct ClockDriver {
/// # pub I: Signal<In, Clock>,
/// # pub B: Signal<In, Clock>,
/// # pub O: Signal<Out, Clock>,
/// # }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// todo!()
/// }
///
/// fn connect(&mut self) {
/// todo!()
/// }
///
/// fn hdl(&self) -> Verilog {
/// todo!()
/// }
/// }
/// ```
///
/// The [Logic] trait requires 3 methods [Logic::update], [Logic::connect],
/// and [Logic::hdl]. The [Logic::update] method is used for simulation, and
/// at the moment, black box modules are not simulatable. So we can accept
/// the default implementation of this. The [Logic::connect] method is used
/// to indicate which members of the circuit are _driven_ by the circuit.
/// A better name might have been `drive`, instead of `connect`, but we will
/// stick with the current terminology. You can think of it in terms of an
/// integrated circuit - outputs, are generally driven and are internally
/// *connected*, while inputs are generally driven from outside and are externally
/// connected. For our black box, the [Logic::connect] trait implementation
/// is very simple:
/// ```rust
/// # use rust_hdl::core:: prelude::*;
/// # #[derive(LogicBlock, Default)]
/// # pub struct ClockDriver {
/// # pub I: Signal<In, Clock>,
/// # pub B: Signal<In, Clock>,
/// # pub O: Signal<Out, Clock>,
/// # }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// // No simulation model
/// }
///
/// fn connect(&mut self) {
/// self.O.connect();
/// }
///
/// fn hdl(&self) -> Verilog {
/// todo!()
/// }
/// }
/// ```
///
/// Now, we need an implementation for the HDL for this Clock driver.
/// That is where we need the [BlackBox] struct.
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
/// # #[derive(LogicBlock, Default)]
/// # pub struct ClockDriver {
/// # pub I: Signal<In, Clock>,
/// # pub B: Signal<In, Clock>,
/// # pub O: Signal<Out, Clock>,
/// # }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// }
///
/// fn connect(&mut self) {
/// self.O.connect();
/// }
///
/// fn hdl(&self) -> Verilog {
/// Verilog::Blackbox(BlackBox {
/// code: r#"
/// (* blackbox *)
/// module IBUFDS(I, B, O)
/// input I;
/// input B;
/// output O;
/// endmodule"#.into(),
/// name: "IBUFDS".into()
/// })
/// }
/// }
/// ```
///
/// Just to re-emphasize the point. Your FPGA provider will give you a
/// Verilog declaration for the IP core. You cannot change it! The names
/// of the signals must be the same, even if Rust complains about your
/// intransigence.
///
/// With all 3 of the methods implemented, we can now create an instance
/// of our clock driver, synthesize it, and test it. Here is the completed
/// example:
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
///
/// #[derive(LogicBlock, Default)]
/// pub struct ClockDriver {
/// pub I: Signal<In, Clock>,
/// pub B: Signal<In, Clock>,
/// pub O: Signal<Out, Clock>,
/// }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// }
///
/// fn connect(&mut self) {
/// self.O.connect();
/// }
///
/// fn hdl(&self) -> Verilog {
/// Verilog::Blackbox(BlackBox {
/// code: r#"
/// (* blackbox *)
/// module IBUFDS(I, B, O);
/// input I;
/// input B;
/// output O;
/// endmodule
/// "#.into(),
/// name: "IBUFDS".into()
/// })
/// }
/// }
///
/// // For technical reasons, the top circuit of a RustHDL firmware
/// // cannot be a black box. So we use TopWrap to wrap it with one.
/// let mut x = TopWrap::new(ClockDriver::default());
/// x.uut.I.connect(); // Drive the positive clock from outside
/// x.uut.B.connect(); // Drive the negative clock from outside
/// x.connect_all(); // Wire up x and its internal components
/// let v = generate_verilog(&x); // Generates verilog and validates it
/// yosys_validate("clock", &v)?;
/// # Ok::<(), SynthError>(())
/// ```
///
/// Wrapping Parameteric IP Cores
///
/// The [BlackBox] variant has a couple of peculiarities that we have hidden in this
/// example. First, note that we pass the module name back to RustHDL in the
/// [BlackBox] instantiation. This is because RustHDL needs to know what the module
/// is called so it can refer to it in the generated code.
///
/// In general RustHDL tries to avoid contention between modules with the same
/// name by automatically namespacing them. That means that if you have a
/// module that is used in two different places in your code, it will get
/// two different names. This is because of the parametric nature of the
/// generated code. RustHDL does not assume (or know) that your two modules
/// will generate identical Verilog. So it assumes they will be different
/// and creates two different named instances.
///
/// To see how that works, let's create a minimum example. For test, we will
/// use a single bit inverter.
/// ```rust
/// # use rust_hdl::core::prelude::*;
///
/// // First a basic inverter example
/// #[derive(LogicBlock, Default)]
/// struct Inverter {
/// sig_in: Signal<In, Bit>,
/// sig_out: Signal<Out, Bit>,
/// }
///
/// // All it does is set the output signal to the inverse
/// // of the input signal.
/// impl Logic for Inverter {
/// #[hdl_gen]
/// fn update(&mut self) {
/// self.sig_out.next = !self.sig_in.val();
/// }
/// }
///
/// // Now we create a circuit with 2 inverters connected
/// // back to back. The net result is a do-nothing (buffer?).
/// #[derive(LogicBlock, Default)]
/// struct DoubleKnot {
/// sig_in: Signal<In, Bit>,
/// sig_out: Signal<Out, Bit>,
/// knot_1: Inverter,
/// knot_2: Inverter,
/// }
///
/// impl Logic for DoubleKnot {
/// #[hdl_gen]
/// fn update(&mut self) {
/// self.knot_1.sig_in.next = self.sig_in.val();
/// self.knot_2.sig_in.next = self.knot_1.sig_out.val();
/// self.sig_out.next = self.knot_2.sig_out.val();
/// }
/// }
///
/// // Now, let's create a [DoubleKnot] and see what we get
/// let mut x = DoubleKnot::default();
/// // The `sig_in` input on `x` needs to be driven or connected
/// x.sig_in.connect();
/// x.connect_all();
/// let v = generate_verilog(&x);
/// // If you examine the generated code, you will see it contains
/// // two instances of modules, one named `top$knot_1` and the
/// assert!(v.contains("top$knot_1 knot_1"));
/// // and the second is `top$knot_2`.
/// assert!(v.contains("top$knot_2 knot_2"));
/// ```
/// The problem arises when you use a [BlackBox] Verilog declaration.
/// In particular, RustHDL does not wrap your declaration (the Verilog is
/// just copied to the output), so it does not know that two different
/// instances of the same blackbox IP may represent different things.
/// A classic case is in the case of a parameterized blackbox IP core.
/// In that case, it is up to you to rename the different IP cores so that
/// they do not conflict. A better way around this is to use the [Wrapper]
/// variant, since that is easier to use in most cases.
#[derive(Debug, Clone)]
pub struct BlackBox {
pub code: String,
pub name: String,
}
/// The [Wrapper] struct provides a more convenient and flexible way to wrap external
/// IP cores than [BlackBox].
///
/// While you can wrap IP cores with [BlackBox], it has some limitations.
/// There are two significant limits to using [BlackBox] to wrap IP cores,
/// and [Wrapper] tries to fix them both.
///
/// - If your IP cores are parametric (for example, they take a
/// parameter to determine an address or bitwidth), you must give them
/// unique names to avoid problems with your toolchain.
/// - You cannot rename or otherwise change any of the signal names
/// going into the IP core when you use [BlackBox].
///
/// Using [Wrapper] addresses both problems. To address the first
/// problem, RustHDL (when using [Wrapper]), creates a wrapper module
/// that hides the wrapped core from the global scope. This additional
/// level of scoping allows you to parameterize/customize the external
/// IP core, without causing conflicts at the global scope. The
/// second problem is addressed also, since the [Wrapper] struct allows
/// you to write Verilog "glue code" to either simplify or otherwise
/// fix up the interface between the IP core and the RustHDL firmware
/// around it.
///
/// To use the [Wrapper] you must provide a custom implementation of the [hdl]
/// function in the [Logic] trait. The [Wrapper] variant has two members.
/// The first member is the [code] where you can write the Verilog glue
/// code to instantiate the IP core, parameterize it, and connect it to the
/// inputs and outputs of the RustHDL object. The second member is the [cores]
/// member, where you provide whatever blackbox code is required for the
/// toolchain to accept your verilog. This typically varies by toolchain.
/// To get `yosys` to accept the verilog, you will need to provide `(* blackbox *)`
/// attributes and module definitions for each external IP core.
///
/// Let's look at some examples.
///
/// Examples
///
/// In the [BlackBox] case, we looked at wrapping a clock buffer into an IP
/// core. Let's redo the same exercise, but with slightly better ergonomics.
/// Here is the definition of the IP core provided by the FPGA vendor
/// ```verilog
/// module IBUFDS(I, B, O);
/// input I;
/// input B;
/// output O;
/// endmodule
/// ```
/// This core is very simple, but we will try and improve the ergonomics
/// of it, and add a simulation model.
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
/// pub struct ClockDriver {
/// pub clock_p: Signal<In, Clock>,
/// pub clock_n: Signal<In, Clock>,
/// pub sys_clock: Signal<Out, Clock>,
/// }
/// ```
///
/// This time, our ClockDriver can use reasonable signal names, because
/// we will use the glue layer to connect it to the IP core. That glue
/// layer is very helpful for remapping signals, combining them or
/// assigning constant values.
///
/// We will also add a simulation model this time, to demonstrate how
/// to do that for an external core.
///
/// As in the case of [BlackBox], we will use
/// the [LogicBlock] derive macro to add the [Logic]
/// trait to our circuit (so RustHDL can work with it), and the
/// [Default] trait as well, to make it easy to use.
/// The [Logic] trait for this circuit will need to be implemented
/// by hand.
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
/// # #[derive(LogicBlock, Default)]
/// # pub struct ClockDriver {
/// # pub clock_p: Signal<In, Clock>,
/// # pub clock_n: Signal<In, Clock>,
/// # pub sys_clock: Signal<Out, Clock>,
/// # }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// todo!()
/// }
///
/// fn connect(&mut self) {
/// todo!()
/// }
///
/// fn hdl(&self) -> Verilog {
/// todo!()
/// }
/// }
/// ```
///
/// The [Logic] trait requires 3 methods [Logic::update], [Logic::connect],
/// and [Logic::hdl]. The [Logic::update] method is used for simulation, and
/// at the moment, black box modules are not simulatable. So we can accept
/// the default implementation of this. The [Logic::connect] method is used
/// to indicate which members of the circuit are _driven_ by the circuit.
/// A better name might have been `drive`, instead of `connect`, but we will
/// stick with the current terminology. You can think of it in terms of an
/// integrated circuit - outputs, are generally driven and are internally
/// *connected*, while inputs are generally driven from outside and are externally
/// connected.
///
/// We also want to create a simulation model for our IP core. This is how
/// RustHDL will know how to include the behavior of the core when it is
/// integrated into simulations. You can skip this step, of course, but
/// then your black box IP cores will be pretty useless for simulation
/// purposes.
///
/// A double-to-single ended clock driver is a fairly complicated
/// piece of analog circuitry. It normally sends a clock edge when
/// the positive and negative going clocks cross. For well behaved
/// differential clocks (which is likely the case in simulation),
/// this amounts to just buffering the positive clock, and ignoring
/// the negative clock. We will need to build a simulation model that
/// includes enough detail to make it useful, but obviously, the
/// fidelity will be limited. For this example, we will opt to simply
/// ignore the negative going clock, and forwarding the positive going clock
/// (not a good idea in practice, but for simulations it's fine).
///
/// ```rust
/// # use rust_hdl::core:: prelude::*;
/// # #[derive(LogicBlock, Default)]
/// # pub struct ClockDriver {
/// # pub clock_p: Signal<In, Clock>,
/// # pub clock_n: Signal<In, Clock>,
/// # pub sys_clock: Signal<Out, Clock>,
/// # }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// self.sys_clock.next = self.clock_p.val();
/// }
///
/// fn connect(&mut self) {
/// self.sys_clock.connect();
/// }
///
/// fn hdl(&self) -> Verilog {
/// todo!()
/// }
/// }
/// ```
///
/// Now, we need an implementation for the HDL for this Clock driver.
/// That is where we need the [Wrapper] struct.
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
/// # #[derive(LogicBlock, Default)]
/// # pub struct ClockDriver {
/// # pub clock_p: Signal<In, Clock>,
/// # pub clock_n: Signal<In, Clock>,
/// # pub sys_clock: Signal<Out, Clock>,
/// # }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// self.sys_clock.next = self.clock_p.val();
/// }
///
/// fn connect(&mut self) {
/// self.sys_clock.connect();
/// }
///
/// fn hdl(&self) -> Verilog {
/// Verilog::Wrapper(Wrapper {
/// code: r#"
/// // We can remap the names here
/// IBUFDS ibufds_inst(.I(clock_p), .B(clock_n), .O(sys_clock));
///
/// "#.into(),
/// cores: r#"
/// (* blackbox *)
/// module IBUFDS(I, B, O)
/// input I;
/// input B;
/// output O;
/// endmodule"#.into(),
/// })
/// }
/// }
/// ```
///
/// With all 3 of the methods implemented, we can now create an instance
/// of our clock driver, synthesize it, and test it. Here is the completed
/// example:
///
/// ```rust
/// # use rust_hdl::core::prelude::*;
///
/// #[derive(LogicBlock, Default)]
/// pub struct ClockDriver {
/// pub clock_p: Signal<In, Clock>,
/// pub clock_n: Signal<In, Clock>,
/// pub sys_clock: Signal<Out, Clock>,
/// }
///
/// impl Logic for ClockDriver {
/// fn update(&mut self) {
/// self.sys_clock.next = self.clock_p.val();
/// }
///
/// fn connect(&mut self) {
/// self.sys_clock.connect();
/// }
///
/// fn hdl(&self) -> Verilog {
/// Verilog::Wrapper(Wrapper {
/// code: r#"
/// // This is basically arbitrary Verilog code that lives inside
/// // a scoped module generated by RustHDL. Whatever IP cores you
/// // use here must have accompanying core declarations in the
/// // cores string, or they will fail verification.
/// //
/// // In this simple case, we remap the names here
/// IBUFDS ibufds_inst(.I(clock_p), .B(clock_n), .O(sys_clock));
///
/// "#.into(),
/// cores: r#"
/// (* blackbox *)
/// module IBUFDS(I, B, O);
/// input I;
/// input B;
/// output O;
/// endmodule"#.into(),
/// })
/// }
/// }
///
/// // Let's create our ClockDriver. No [TopWrap] is required here.
/// let mut x = ClockDriver::default();
/// x.clock_p.connect(); // Drive the positive clock from outside
/// x.clock_n.connect(); // Drive the negative clock from outside
/// x.connect_all(); // Wire up x and its internal components
/// let v = generate_verilog(&x); // Generates verilog and validates it
/// yosys_validate("clock", &v)?;
/// # Ok::<(), SynthError>(())
/// ```
///
#[derive(Debug, Clone)]
pub struct Wrapper {
pub code: String,
pub cores: String,
}
#[derive(Debug, Clone)]
pub enum Verilog {
/// Use [Empty] when you do not want a module represented in Verilog at all
Empty,
#[doc(hidden)]
Combinatorial(VerilogBlock),
/// Custom Verilog for a RustHDL module
Custom(String),
/// Blackbox for referencing IP cores.
Blackbox(BlackBox),
/// Wrap an external IP core or Verilog code into a RustHDL module.
Wrapper(Wrapper),
}
impl Default for Verilog {
fn default() -> Self {
Self::Empty
}
}
#[doc(hidden)]
pub type VerilogBlock = Vec<VerilogStatement>;
#[doc(hidden)]
#[derive(Debug, Clone)]
pub enum VerilogStatement {
Assignment(VerilogExpression, VerilogExpression),
SliceAssignment {
base: VerilogExpression,
width: usize,
offset: VerilogExpression,
replacement: VerilogExpression,
},
If(VerilogConditional),
Match(VerilogMatch),
Loop(VerilogLoop),
Comment(String),
Link(Vec<VerilogLink>),
Macro(VerilogBlock),
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub enum VerilogLink {
Forward(VerilogLinkDetails),
Backward(VerilogLinkDetails),
Bidirectional(VerilogLinkDetails),
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogLinkDetails {
pub my_name: String,
pub owner_name: String,
pub other_name: String,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogIndexAssignment {
pub target: VerilogExpression,
pub index: VerilogExpression,
pub value: VerilogExpression,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogConditional {
pub test: VerilogExpression,
pub then: VerilogBlock,
pub otherwise: VerilogBlockOrConditional,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogLoop {
pub index: String,
pub from: VerilogLiteral,
pub to: VerilogLiteral,
pub block: VerilogBlock,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub enum VerilogBlockOrConditional {
Block(VerilogBlock),
Conditional(Box<VerilogStatement>),
None,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogMatch {
pub test: VerilogExpression,
pub cases: Vec<VerilogCase>,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogCase {
pub condition: String,
pub block: VerilogBlock,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub struct VerilogLiteral {
val: BigInt,
bits: usize,
}
impl VerilogLiteral {
pub fn as_usize(&self) -> usize {
let m = self.val.to_u32_digits();
assert!(m.0 != Sign::Minus);
let m = m.1;
match m.len() {
0 => 0,
1 => m[0] as usize,
_ => panic!("Loop index is too large!"),
}
}
}
impl From<bool> for VerilogLiteral {
fn from(x: bool) -> Self {
let bi: BigInt = if x { 1_u32 } else { 0_u32 }.into();
VerilogLiteral { val: bi, bits: 1 }
}
}
macro_rules! define_literal_from_uint {
($name: ident, $width: expr) => {
impl From<$name> for VerilogLiteral {
fn from(x: $name) -> Self {
let bi: BigInt = x.into();
VerilogLiteral {
val: bi,
bits: $width,
}
}
}
};
}
define_literal_from_uint!(u128, 128);
define_literal_from_uint!(u64, 64);
define_literal_from_uint!(i32, 32);
define_literal_from_uint!(u32, 32);
define_literal_from_uint!(u16, 16);
define_literal_from_uint!(u8, 8);
#[cfg(target_pointer_width = "64")]
define_literal_from_uint!(usize, 64);
#[cfg(target_pointer_width = "32")]
define_literal_from_uint!(usize, 32);
impl<const N: usize> From<Bits<N>> for VerilogLiteral {
fn from(x: Bits<N>) -> Self {
let mut z = BigInt::default();
for i in 0..N {
z.set_bit(i as u64, x.get_bit(i));
}
VerilogLiteral { val: z, bits: N }
}
}
impl<const N: usize> From<Signed<N>> for VerilogLiteral {
fn from(x: Signed<N>) -> Self {
VerilogLiteral {
val: x.bigint(),
bits: N,
}
}
}
impl Display for VerilogLiteral {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let bits = self.bits;
Display::fmt(&bits, f)?;
Display::fmt("'", f)?;
if bits % 4 != 0 && self.bits < 20 {
Display::fmt("b", f)?;
std::fmt::Binary::fmt(&self.val, f)
} else {
Display::fmt("h", f)?;
std::fmt::LowerHex::fmt(&self.val, f)
}
}
}
impl LowerHex for VerilogLiteral {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
let bits = self.bits;
Display::fmt(&bits, f)?;
Display::fmt("'h", f)?;
LowerHex::fmt(&self.val, f)
}
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub enum VerilogExpression {
Signal(String),
Literal(VerilogLiteral),
Cast(Box<VerilogExpression>, usize),
Paren(Box<VerilogExpression>),
Binary(Box<VerilogExpression>, VerilogOp, Box<VerilogExpression>),
Unary(VerilogOpUnary, Box<VerilogExpression>),
Index(Box<VerilogExpression>, Box<VerilogExpression>),
Slice(Box<VerilogExpression>, usize, Box<VerilogExpression>),
IndexReplace(
Box<VerilogExpression>,
Box<VerilogExpression>,
Box<VerilogExpression>,
),
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub enum VerilogOp {
Add,
Sub,
Mul,
LogicalAnd,
LogicalOr,
BitXor,
BitAnd,
BitOr,
Shl,
Shr,
Eq,
Lt,
Le,
Ne,
Ge,
Gt,
}
#[doc(hidden)]
#[derive(Debug, Clone)]
pub enum VerilogOpUnary {
Not,
Neg,
All,
Any,
Xor,
}