1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
use crate::core::prelude::*;
use crate::hls::bus::{FIFOReadController, FIFOWriteController, SoCBusController};
use crate::widgets::prelude::*;

// For now, we will hard code the op codes
// 00 - NOOP
// 01 - PING
// 02 - READ
// 03 - WRITE
// 04 - POLL
// 05 - STREAM (send any non-zero value to stop streaming)

#[derive(LogicState, Debug, Copy, Clone, PartialEq)]
enum BaseControllerState {
    Idle,
    Ping,
    ReadLoadCount,
    Read,
    Write,
    WriteLoadCount,
    PollWait,
    Poll,
    StreamWait,
    Stream,
}

// This version of the SOCController takes 8-bit sequences as inputs,
// and communicates with a 16 bit bus.  Other designs are possible,
// but the internal logic needs to handle the differences in address
// space bits, data widths, etc.
#[derive(LogicBlock, Default)]
pub struct BaseController<const A: usize> {
    pub from_cpu: FIFOReadController<Bits<16>>, // Word-stream from the CPU
    pub to_cpu: FIFOWriteController<Bits<16>>,  // Word-stream to the CPU
    pub clock: Signal<In, Clock>,               // All in a single clock domain
    state: DFF<BaseControllerState>,
    pub bus: SoCBusController<16, { A }>,
    counter: DFF<Bits<16>>,
    opcode: Signal<Local, Bits<8>>,
}

impl<const A: usize> Logic for BaseController<A> {
    #[hdl_gen]
    fn update(&mut self) {
        dff_setup!(self, clock, state, counter);
        // Latch prevention
        self.opcode.next = self.from_cpu.data.val().get_bits::<8>(8);
        // Default values for output signals.
        self.from_cpu.read.next = false;
        self.to_cpu.data.next = 0.into();
        self.to_cpu.write.next = false;
        self.bus.clock.next = self.clock.val();
        self.bus.from_controller.next = 0.into();
        self.bus.strobe.next = false;
        self.bus.address.next = 0.into();
        self.bus.address_strobe.next = false;
        match self.state.q.val() {
            BaseControllerState::Idle => {
                if !self.from_cpu.empty.val() {
                    if self.opcode.val() == 0 {
                        // Skip opcodes that are NOOP
                        self.from_cpu.read.next = true;
                    } else if self.opcode.val() == 1 {
                        self.state.d.next = BaseControllerState::Ping;
                    } else if self.opcode.val() == 2 {
                        // Latch the address
                        self.bus.address.next = self.from_cpu.data.val().get_bits::<A>(0);
                        self.bus.address_strobe.next = true;
                        self.from_cpu.read.next = true;
                        self.state.d.next = BaseControllerState::ReadLoadCount;
                    } else if self.opcode.val() == 3 {
                        // Latch the address
                        self.bus.address.next = self.from_cpu.data.val().get_bits::<A>(0);
                        self.bus.address_strobe.next = true;
                        self.from_cpu.read.next = true;
                        self.state.d.next = BaseControllerState::WriteLoadCount;
                    } else if self.opcode.val() == 4 {
                        self.bus.address.next = self.from_cpu.data.val().get_bits::<A>(0);
                        self.bus.address_strobe.next = true;
                        self.from_cpu.read.next = true;
                        self.state.d.next = BaseControllerState::PollWait;
                    } else if self.opcode.val() == 5 {
                        self.bus.address.next = self.from_cpu.data.val().get_bits::<A>(0);
                        self.bus.address_strobe.next = true;
                        self.from_cpu.read.next = true;
                        self.state.d.next = BaseControllerState::StreamWait;
                    }
                }
            }
            BaseControllerState::Ping => {
                self.to_cpu.data.next = self.from_cpu.data.val();
                self.to_cpu.write.next = true;
                self.from_cpu.read.next = true;
                self.state.d.next = BaseControllerState::Idle;
            }
            BaseControllerState::ReadLoadCount => {
                if !self.from_cpu.empty.val() {
                    self.counter.d.next = self.from_cpu.data.val();
                    self.from_cpu.read.next = true;
                    self.state.d.next = BaseControllerState::Read;
                }
            }
            BaseControllerState::Read => {
                if self.bus.ready.val() & !self.to_cpu.full.val() {
                    self.to_cpu.data.next = self.bus.to_controller.val();
                    self.bus.strobe.next = true;
                    self.to_cpu.write.next = true;
                    self.counter.d.next = self.counter.q.val() - 1;
                    if self.counter.q.val() == 1 {
                        self.state.d.next = BaseControllerState::Idle;
                    }
                }
            }
            BaseControllerState::WriteLoadCount => {
                if !self.from_cpu.empty.val() {
                    self.counter.d.next = self.from_cpu.data.val();
                    self.from_cpu.read.next = true;
                    self.state.d.next = BaseControllerState::Write;
                }
            }
            BaseControllerState::Write => {
                if self.bus.ready.val() & !self.from_cpu.empty.val() {
                    self.bus.from_controller.next = self.from_cpu.data.val();
                    self.bus.strobe.next = true;
                    self.from_cpu.read.next = true;
                    self.counter.d.next = self.counter.q.val() - 1;
                    if self.counter.q.val() == 1 {
                        self.state.d.next = BaseControllerState::Idle;
                    }
                }
            }
            BaseControllerState::PollWait => {
                self.state.d.next = BaseControllerState::Poll;
            }
            BaseControllerState::Poll => {
                if !self.to_cpu.full.val() {
                    self.to_cpu.data.next =
                        bits::<16>(0xFF00) | bit_cast::<16, 1>(self.bus.ready.val().into());
                    self.to_cpu.write.next = true;
                    self.state.d.next = BaseControllerState::Idle;
                }
            }
            BaseControllerState::StreamWait => {
                self.state.d.next = BaseControllerState::Stream;
            }
            BaseControllerState::Stream => {
                if self.bus.ready.val() & !self.to_cpu.full.val() {
                    self.to_cpu.data.next = self.bus.to_controller.val();
                    self.bus.strobe.next = true;
                    self.to_cpu.write.next = true;
                }
                if !self.from_cpu.empty.val() {
                    if self.from_cpu.data.val().any() {
                        self.state.d.next = BaseControllerState::Idle;
                    }
                    self.from_cpu.read.next = true;
                }
            }
            _ => {
                self.state.d.next = BaseControllerState::Idle;
            }
        }
    }
}

#[test]
fn test_base_controller_is_synthesizable() {
    let mut uut = BaseController::<4>::default();
    uut.connect_all();
    let vlog = generate_verilog(&uut);
    yosys_validate("base_controller", &vlog).unwrap();
}