1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
use crate::core::prelude::*;
use crate::hls::bus::{SoCBusController, SoCBusResponder};
use crate::hls::HLSNamedPorts;
use crate::widgets::prelude::*;
use std::collections::BTreeMap;

// A RouterROM allows you to connect multiple bridges to a single master
// Each bridge is assigned a base address (they must be non-overlapping).
// The master then sees each port on the bridge mapped to the offset
// of it's base address.  Note that you can stack RouterROMs if needed.

#[derive(LogicBlock)]
pub struct RouterROM<const D: usize, const A: usize, const N: usize> {
    pub upstream: SoCBusResponder<D, A>,
    pub nodes: [SoCBusController<D, A>; N],
    node_decode: ROM<Bits<8>, A>,
    virtual_decode: ROM<Bits<A>, A>,
    active: DFF<Bits<8>>,
    virtual_address: DFF<Bits<A>>,
    address_strobe_delay: DFF<Bit>,
    clock: Signal<Local, Clock>,
    reset: Signal<Local, Reset>,
    _address_map: Vec<String>,
}

impl<const D: usize, const A: usize, const N: usize> HLSNamedPorts for RouterROM<D, A, N> {
    fn ports(&self) -> Vec<String> {
        self._address_map.clone()
    }
}

impl<const D: usize, const A: usize, const N: usize> RouterROM<D, A, N> {
    pub fn new(downstream_names: [&str; N], downstream_devices: [&dyn HLSNamedPorts; N]) -> Self {
        let address_count = downstream_devices
            .iter()
            .map(|x| x.ports().len())
            .collect::<Vec<_>>();
        let mut _address_map = vec![];
        for ndx in 0..N {
            let prefix = downstream_names[ndx];
            _address_map.extend(
                downstream_devices[ndx]
                    .ports()
                    .iter()
                    .map(|x| format!("{}_{}", prefix, x)),
            );
        }
        // Make the node decode ROM
        let mut offset = 0;
        let mut node_rom = BTreeMap::new();
        let mut base_rom = BTreeMap::new();
        for (ndx, count) in address_count.iter().enumerate() {
            assert_ne!(*count, 0);
            for addr in 0..*count {
                let address: Bits<A> = (offset + addr).into();
                let node: Bits<8> = ndx.into();
                node_rom.insert(address, node);
                let virtual_address: Bits<A> = addr.into();
                base_rom.insert(address, virtual_address);
            }
            offset = offset + count;
        }
        Self {
            upstream: Default::default(),
            nodes: array_init::array_init(|_| Default::default()),
            node_decode: ROM::new(node_rom),
            virtual_decode: ROM::new(base_rom),
            active: Default::default(),
            virtual_address: Default::default(),
            address_strobe_delay: Default::default(),
            clock: Default::default(),
            reset: Default::default(),
            _address_map,
        }
    }
}

impl<const D: usize, const A: usize, const N: usize> Logic for RouterROM<D, A, N> {
    #[hdl_gen]
    fn update(&mut self) {
        self.clock.next = self.upstream.clock.val();
        self.reset.next = self.upstream.reset.val();
        self.upstream.ready.next = false;
        self.upstream.to_controller.next = 0_usize.into();
        dff_setup!(
            self,
            clock,
            reset,
            active,
            virtual_address,
            address_strobe_delay
        );
        self.node_decode.address.next = self.upstream.address.val();
        self.virtual_decode.address.next = self.upstream.address.val();
        if self.upstream.address_strobe.val() {
            self.active.d.next = self.node_decode.data.val();
            self.virtual_address.d.next = self.virtual_decode.data.val();
        }
        // Delay the address strobe by 1 clock cycle to allow the virtual address
        // calculation to be pipelined.
        self.address_strobe_delay.d.next = self.upstream.address_strobe.val();
        for i in 0_usize..N {
            self.nodes[i].from_controller.next = 0x5ea1_usize.into();
            self.nodes[i].address.next = 0_usize.into();
            self.nodes[i].address_strobe.next = false;
            self.nodes[i].strobe.next = false;
            self.nodes[i].clock.next = self.clock.val();
            self.nodes[i].reset.next = self.reset.val();
            if self.active.q.val().index() == i {
                self.nodes[i].from_controller.next = self.upstream.from_controller.val();
                self.nodes[i].address.next = self.virtual_address.q.val();
                self.nodes[i].strobe.next = self.upstream.strobe.val();
                self.upstream.to_controller.next = self.nodes[i].to_controller.val();
                self.upstream.ready.next = self.nodes[i].ready.val();
                self.nodes[i].address_strobe.next = self.address_strobe_delay.q.val();
            }
        }
        if self.upstream.address_strobe.val() {
            self.upstream.ready.next = false;
        }
    }
}

#[test]
fn test_router_rom_is_synthesizable() {
    use crate::hls::bridge::Bridge;
    let bridge1 = Bridge::<16, 8, 4>::new(["Top", "Left", "Right", "Bottom"]);
    let bridge2 = Bridge::<16, 8, 2>::new(["Red", "Blue"]);
    let bridge3 =
        Bridge::<16, 8, 6>::new(["Club", "Spades", "Diamond", "Heart", "Joker", "Instruction"]);
    let mut router =
        RouterROM::<16, 8, 3>::new(["Sides", "Colors", "Faces"], [&bridge1, &bridge2, &bridge3]);
    router.upstream.link_connect_dest();
    for i in 0..3 {
        router.nodes[i].ready.connect();
        router.nodes[i].to_controller.connect();
    }
    router.connect_all();
    let vlog = generate_verilog(&router);
    yosys_validate("router_rom", &vlog).unwrap();
}