1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
use crate::core::ast::{
    Verilog, VerilogConditional,
    VerilogExpression, VerilogLink, VerilogLinkDetails, VerilogMatch
};
use crate::core::atom::Atom;
use crate::core::block::Block;
use crate::core::named_path::NamedPath;
use crate::core::probe::Probe;
use crate::core::verilog_visitor::VerilogVisitor;
use petgraph::algo::{connected_components, is_cyclic_directed};
use petgraph::dot::Dot;
use petgraph::prelude::*;
use petgraph::unionfind::UnionFind;
use petgraph::visit::NodeIndexable;
use std::collections::HashMap;
use std::fmt::Write;

#[derive(Clone, Debug, Copy, PartialEq)]
pub enum SignalNodeKind {
    Normal,
    Bidirectional,
    Source,
    Sink,
}

#[derive(Clone, Debug, PartialEq)]
pub struct SignalNode {
    pub name: String,
    pub kind: SignalNodeKind,
}

#[derive(Clone, Debug, Default)]
pub struct SignalGraph {
    pub graph: Graph<SignalNode, (), Directed>,
}

impl SignalGraph {
    fn dot(&self) -> String {
        format!("{:?}", Dot::new(&self.graph))
    }
    fn add_signal_node(&mut self, node: &SignalNode) -> NodeIndex {
        let index = self.graph.node_indices().find(|i| self.graph[*i].eq(node));
        return match index {
            Some(n) => n,
            None => self.graph.add_node(node.clone()),
        };
    }
    fn add_signal_edge(&mut self, from: &SignalNode, to: NodeIndex) {
        let from_index = self.add_signal_node(from);
        if !self.graph.contains_edge(from_index, to) {
            self.graph.add_edge(from_index, to, ());
        }
    }
}

#[derive(Clone, Debug, Copy)]
pub enum ExpressionMode {
    Write,
    Read,
}

type ReadScope = Vec<SignalNode>;

pub struct TimingChecker {
    path: NamedPath,
    namespace: NamedPath,
    mode: ExpressionMode,
    write_name: String,
    read_names: Vec<ReadScope>,
    pub graph: SignalGraph,
}

impl Default for TimingChecker {
    fn default() -> Self {
        Self {
            path: Default::default(),
            namespace: Default::default(),
            mode: ExpressionMode::Write,
            write_name: "".to_string(),
            read_names: vec![],
            graph: Default::default(),
        }
    }
}

impl TimingChecker {
    fn set_write_mode(&mut self) {
        self.mode = ExpressionMode::Write;
    }
    fn set_read_mode(&mut self) {
        self.mode = ExpressionMode::Read;
    }
    fn push_read_scope(&mut self) {
        self.read_names.push(vec![]);
    }
    fn pop_read_scope(&mut self) {
        self.read_names.pop();
    }
    fn clear_scope(&mut self) {
        self.read_names.clear();
        self.read_names.push(Default::default());
    }
    fn add_read(&mut self, name: &str, kind: SignalNodeKind) {
        if self.read_names.is_empty() {
            self.read_names.push(ReadScope::default());
        }
        self.read_names.last_mut().unwrap().push(SignalNode {
            name: name.into(),
            kind: kind,
        })
    }
    fn add_code(&mut self, module: &str, code: Verilog) {
        match &code {
            Verilog::Combinatorial(code) => {
                self.visit_block(code);
            }
            _ => {}
        }
    }
    fn add_write(&mut self, write_name: &str, kind: SignalNodeKind) {
        assert!(!write_name.is_empty());
        let write_node = SignalNode {
            name: write_name.into(),
            kind,
        };
        let write_node = self.graph.add_signal_node(&write_node);
        for scope in &self.read_names {
            for read in scope {
                self.graph.add_signal_edge(read, write_node);
            }
        }
    }
    fn link_fixup(&self, x: &VerilogLinkDetails) -> (String, String) {
        let v1 = format!(
            "{}${}${}",
            self.path.to_string(),
            x.other_name.replace("[", "$").replace("]", ""),
            x.my_name
        );
        let v2 = format!(
            "{}${}${}",
            self.path.to_string(),
            x.owner_name.replace("[", "$").replace("]", ""),
            x.my_name
        );
        (v1, v2)
    }
}

impl VerilogVisitor for TimingChecker {
    fn visit_conditional(&mut self, c: &VerilogConditional) {
        self.push_read_scope();
        self.visit_expression(&c.test);
        self.visit_block(&c.then);
        self.visit_block_or_conditional(&c.otherwise);
        self.pop_read_scope();
    }
    fn visit_match(&mut self, m: &VerilogMatch) {
        self.visit_expression(&m.test);
        self.push_read_scope();
        for case in &m.cases {
            self.visit_case(case);
        }
        self.pop_read_scope();
    }
    fn visit_assignment(&mut self, l: &VerilogExpression, r: &VerilogExpression) {
        self.push_read_scope();
        self.write_name = Default::default();
        self.mode = ExpressionMode::Write;
        self.visit_expression(l);
        self.mode = ExpressionMode::Read;
        self.visit_expression(r);
        let write_name = self.write_name.clone();
        self.add_write(&write_name, SignalNodeKind::Normal);
        self.pop_read_scope();
    }
    fn visit_slice_assignment(
        &mut self,
        base: &VerilogExpression,
        width: &usize,
        offset: &VerilogExpression,
        replacement: &VerilogExpression,
    ) {
        self.push_read_scope();
        self.write_name = Default::default();
        self.mode = ExpressionMode::Write;
        self.visit_expression(base);
        self.mode = ExpressionMode::Read;
        self.visit_expression(offset);
        self.visit_expression(replacement);
        let write_name = self.write_name.clone();
        self.add_write(&write_name, SignalNodeKind::Normal);
        self.pop_read_scope();
    }
    fn visit_signal(&mut self, c: &str) {
        let c = format!("{}${}", self.path.to_string(), c).replace("$next", "");
        match self.mode {
            ExpressionMode::Write => self.write_name = c,
            ExpressionMode::Read => self.add_read(&c, SignalNodeKind::Normal),
        }
    }
    fn visit_link(&mut self, c: &[VerilogLink]) {
        for link in c {
            match link {
                VerilogLink::Forward(x) => {
                    self.push_read_scope();
                    let (w, r) = self.link_fixup(x);
                    self.add_read(&r, SignalNodeKind::Normal);
                    self.add_write(&w, SignalNodeKind::Normal);
                    self.pop_read_scope();
                }
                VerilogLink::Backward(x) => {
                    self.push_read_scope();
                    let (r, w) = self.link_fixup(x);
                    self.add_read(&r, SignalNodeKind::Normal);
                    self.add_write(&w, SignalNodeKind::Normal);
                    self.pop_read_scope();
                }
                VerilogLink::Bidirectional(x) => {
                    let (w, r) = self.link_fixup(x);
                    self.push_read_scope();
                    self.add_read(&r, SignalNodeKind::Bidirectional);
                    self.add_write(&w, SignalNodeKind::Bidirectional);
                    self.pop_read_scope();
                }
            }
        }
    }
}

impl Probe for TimingChecker {
    fn visit_start_scope(&mut self, name: &str, node: &dyn Block) {
        println!("Start scope {}", name);
        self.path.push(name);
        self.namespace.reset();
        self.add_code(&self.path.to_string(), node.hdl());
        for info in &node.timing() {
            // The timing info represents a register.  A register
            // adds a write dependency based on the clock
            // The use of the clock decouples the outputs from the inputs.
            //
            // We capture this by adding a fake node to the signal graph
            self.push_read_scope();
            self.add_read(
                &format!("{}${}", self.path.to_string(), info.name),
                SignalNodeKind::Source,
            );
            for output in &info.outputs {
                self.add_write(
                    &format!("{}${}", self.path.to_string(), output),
                    SignalNodeKind::Normal,
                );
            }
            self.pop_read_scope();
            let write_name = format!("{}${}", self.path.to_string(), info.name);
            for input in &info.inputs {
                self.push_read_scope();
                self.add_read(
                    &format!("{}${}", self.path.to_string(), input),
                    SignalNodeKind::Normal,
                );
                self.add_write(&write_name, SignalNodeKind::Sink);
                self.pop_read_scope();
            }
        }
        self.clear_scope();
    }
    fn visit_start_namespace(&mut self, name: &str, _node: &dyn Block) {
        self.namespace.push(name);
    }
    fn visit_atom(&mut self, name: &str, signal: &dyn Atom) {
        let module_path = self.path.to_string();
        let module_name = self.path.last();
        let namespace = self.namespace.flat("$");
        let name = if namespace.is_empty() {
            name.to_owned()
        } else {
            format!("{}${}", namespace, name)
        };
    }
    fn visit_end_namespace(&mut self, _name: &str, _node: &dyn Block) {
        self.namespace.pop();
    }
    fn visit_end_scope(&mut self, _name: &str, _node: &dyn Block) {
        self.path.pop();
    }
}

pub fn check_timing<U: Block>(uut: &U) {
    let mut scan = TimingChecker::default();
    uut.accept("top", &mut scan);
    //println!("{}",&scan.graph);
    let dot = scan.graph.dot();
    println!("Graph is cyclic: {}", is_cyclic_directed(&scan.graph.graph));
    println!(
        "Number of connected components: {}",
        connected_components(&scan.graph.graph)
    );
    let g = &scan.graph.graph;
    let mut vertex_sets = UnionFind::new(g.node_count());
    for edge in g.edge_references() {
        let (a, b) = (edge.source(), edge.target());
        vertex_sets.union(g.to_index(a), g.to_index(b));
    }
    let mut labels = vertex_sets.into_labeling();
    let mut unique_labels = labels.clone();
    unique_labels.sort_unstable();
    unique_labels.dedup();
    // For each label, we extract the vertices and build a new graph
    for subgraph in unique_labels {
        let mut remap: HashMap<_, _> = Default::default();
        let mut s: Graph<SignalNode, ()> = Graph::default();
        for (ndx, label) in labels.iter().enumerate() {
            if *label == subgraph {
                let old_index = g.from_index(ndx);
                let old_weight = g[g.from_index(ndx)].clone();
                let new_index = s.add_node(old_weight);
                remap.insert(old_index, new_index);
            }
        }
        for edge in g.edge_references() {
            let (a, b) = (edge.source(), edge.target());
            assert!(!(remap.contains_key(&a) ^ remap.contains_key(&b)));
            if remap.contains_key(&a) {
                let a_new = remap.get(&a).unwrap();
                let b_new = remap.get(&b).unwrap();
                s.add_edge(*a_new, *b_new, ());
            }
        }
        println!("Number of elements in subgraph {}", remap.len());
        std::fs::write(
            format!("sub_graph_{}.dot", subgraph),
            format!("{:?}", Dot::new(&s)),
        )
        .unwrap();
    }
    //std::fs::write("dag.dot", dot).unwrap();
}