1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
use std::collections::{BTreeMap};
use super::mcb_if::MCBInterface1GDDR2;
use crate::core::prelude::*;
use crate::hls::fifo::AsyncFIFO;
use crate::widgets::prelude::*;

#[derive(LogicState, Copy, Clone, Debug, PartialEq)]
pub enum MIGInstruction {
    Write,
    Read,
    WritePrecharge,
    ReadPrecharge,
    Refresh
}

#[derive(LogicStruct, Copy, Clone, Debug, Default, PartialEq)]
pub struct MIGCommand {
    pub instruction: MIGInstruction,
    pub burst_len: Bits<6>,
    pub byte_address: Bits<30>,
}

#[derive(LogicStruct, Copy, Clone, Debug, Default, PartialEq)]
pub struct MaskedWrite {
    pub mask: Bits<4>,
    pub data: Bits<32>,
}

#[derive(LogicInterface, Default)]
pub struct CommandPort {
    pub clock: Signal<In, Clock>,
    pub enable: Signal<In, Bit>,
    pub cmd: Signal<In, MIGCommand>,
    pub empty: Signal<Out, Bit>,
    pub full: Signal<Out, Bit>,
}

#[derive(LogicInterface, Default)]
pub struct WritePort {
    pub clock: Signal<In, Clock>,
    pub enable: Signal<In, Bit>,
    pub data: Signal<In, MaskedWrite>,
    pub full: Signal<Out, Bit>,
    pub empty: Signal<Out, Bit>,
    pub count: Signal<Out, Bits<7>>,
    pub underrun: Signal<Out, Bit>,
    pub error: Signal<Out, Bit>,
}

#[derive(LogicInterface, Default)]
pub struct ReadPort {
    pub clock: Signal<In, Clock>,
    pub enable: Signal<In, Bit>,
    pub data: Signal<Out, Bits<32>>,
    pub full: Signal<Out, Bit>,
    pub empty: Signal<Out, Bit>,
    pub count: Signal<Out, Bits<7>>,
    pub overflow: Signal<Out, Bit>,
    pub error: Signal<Out, Bit>,
}

#[derive(LogicState, Copy, Clone, Debug, PartialEq)]
enum State {
    Init,
    Calibrating,
    Idle,
    Reading,
    Writing,
    Error,
    Refresh,
}

#[derive(LogicBlock)]
pub struct MemoryInterfaceGenerator {
    // Raw clock from the system - cannot be intercepted
    pub raw_sys_clk: Signal<In, Clock>,
    // Reset - must be handled externally
    pub reset: Signal<In, Bit>,
    // Calibration complete
    pub calib_done: Signal<Out, Bit>,
    // Buffered 100 MHz clock
    pub clk_out: Signal<Out, Clock>,
    // Delayed reset
    pub reset_out: Signal<Out, Bit>,
    // P0 command port
    pub p0_cmd: CommandPort,
    // P0 write port
    pub p0_wr: WritePort,
    // P0 read port
    pub p0_rd: ReadPort,
    // MCB interface
    pub mcb: MCBInterface1GDDR2,
    // FIFO for the commands
    cmd_fifo: AsynchronousFIFO<MIGCommand, 2, 3, 1>,
    write_fifo: AsynchronousFIFO<MaskedWrite, 6, 7, 1>,
    read_fifo: AsynchronousFIFO<Bits<32>, 6, 7, 1>,
    timer: DFF<Bits<16>>,
    address: DFF<Bits<32>>,
    state: DFF<State>,
    calib: DFF<bool>,
    _dram: BTreeMap<Bits<32>, Bits<32>>,
    cmd: Signal<Local, MIGCommand>,
}

// TODO - currently assumes the MIG is at the top level of the
// Verilog structure, and that the object is named "mig".  Generalizing
// this would be a good idea.
fn add_mig_timing_constraint(raw_sys_clk: &mut Signal<In, Clock>) {
    raw_sys_clk.add_constraint(PinConstraint {
        index: 0,
        constraint: Constraint::Timing(Timing::Custom(r#"NET "*selfrefresh_mcb_mode" TIG"#.into())),
    });
    raw_sys_clk.add_constraint(PinConstraint {
        index: 0,
        constraint: Constraint::Timing(Timing::Custom(r#"NET "*pll_lock" TIG"#.into())),
    });
    raw_sys_clk.add_constraint(PinConstraint {
        index: 0,
        constraint: Constraint::Timing(Timing::Custom(r#"NET "*CKE_Train" TIG"#.into())),
    });
}

impl Default for MemoryInterfaceGenerator {
    fn default() -> Self {
        let mut raw_sys_clk = Signal::default();
        add_mig_timing_constraint(&mut raw_sys_clk);
        Self {
            raw_sys_clk,
            reset: Default::default(),
            calib_done: Default::default(),
            clk_out: Default::default(),
            reset_out: Default::default(),
            p0_cmd: Default::default(),
            p0_wr: Default::default(),
            p0_rd: Default::default(),
            mcb: Default::default(),
            cmd_fifo: AsynchronousFIFO::default(),
            write_fifo: AsynchronousFIFO::default(),
            read_fifo: Default::default(),
            timer: Default::default(),
            address: Default::default(),
            state: Default::default(),
            calib: Default::default(),
            _dram: Default::default(),
            cmd: Default::default(),
        }
    }
}

impl Logic for MemoryInterfaceGenerator {
    fn update(&mut self) {
        // Connect the hardware side of the fifos to the raw clock
        self.cmd_fifo.read_clock.next = self.raw_sys_clk.val();
        self.write_fifo.read_clock.next = self.raw_sys_clk.val();
        self.read_fifo.write_clock.next = self.raw_sys_clk.val();
        self.state.clk.next = self.raw_sys_clk.val();
        self.calib.clk.next = self.raw_sys_clk.val();
        self.timer.clk.next = self.raw_sys_clk.val();
        self.address.clk.next = self.raw_sys_clk.val();
        // Latch prevention
        self.state.d.next = self.state.q.val();
        self.calib.d.next = self.calib.q.val();
        self.address.d.next = self.address.q.val();
        // Connect the command fifo to the command port
        self.cmd_fifo.data_in.next = self.p0_cmd.cmd.val();
        self.cmd_fifo.write.next = self.p0_cmd.enable.val();
        self.p0_cmd.empty.next = !self.cmd_fifo.write_fill.val().any();
        self.p0_cmd.full.next = self.cmd_fifo.full.val();
        self.cmd_fifo.write_clock.next = self.p0_cmd.clock.val();
        // Connect the write fifo to the write port
        self.write_fifo.data_in.next = self.p0_wr.data.val();
        self.write_fifo.write.next = self.p0_wr.enable.val();
        self.p0_wr.empty.next = !self.write_fifo.write_fill.val().any();
        self.p0_wr.full.next = self.write_fifo.full.val();
        self.p0_wr.error.next = self.write_fifo.underflow.val() | self.write_fifo.overflow.val();
        self.p0_wr.underrun.next = self.write_fifo.underflow.val();
        self.write_fifo.write_clock.next = self.p0_wr.clock.val();
        self.p0_wr.count.next = self.write_fifo.write_fill.val();
        // Connect the read fifo to the read port
        self.p0_rd.data.next = self.read_fifo.data_out.val();
        self.read_fifo.read.next = self.p0_rd.enable.val();
        self.p0_rd.error.next = self.read_fifo.underflow.val() | self.read_fifo.overflow.val();
        self.p0_rd.overflow.next = self.read_fifo.overflow.val();
        self.p0_rd.empty.next = self.read_fifo.empty.val();
        self.p0_rd.full.next = self.read_fifo.full.val();
        self.read_fifo.read_clock.next = self.p0_rd.clock.val();
        self.p0_rd.count.next = self.read_fifo.read_fill.val();
        self.calib_done.next = self.calib.q.val();
        self.cmd.next = self.cmd_fifo.data_out.val();
        if self.timer.q.val().any() {
            self.timer.d.next = self.timer.q.val() - 1_usize;
        } else {
            self.timer.d.next = self.timer.q.val();
        }
        self.clk_out.next = self.raw_sys_clk.val();
        self.cmd_fifo.read.next = false;
        self.write_fifo.read.next = false;
        self.read_fifo.write.next = false;
        self.reset_out.next = false;
        match self.state.q.val() {
            State::Init => {
                if self.reset.val() {
                    self.state.d.next = State::Calibrating;
                    self.timer.d.next = 100_usize.into();
                }
            }
            State::Calibrating => {
                if (self.timer.q.val() == 0_usize) & !self.reset.val() {
                    self.calib.d.next = true;
                    self.state.d.next = State::Idle;
                    self.reset_out.next = true;
                }
            }
            State::Idle => {
                if !self.cmd_fifo.empty.val() {
                    // Byte address lower 2 bits must be zero
                    if self.cmd.val().byte_address.get_bits::<2>(0).any() {
                        self.state.d.next = State::Error;
                    } else {
                        match self.cmd.val().instruction {
                            MIGInstruction::Write | MIGInstruction::WritePrecharge => {
                                self.state.d.next = State::Writing;
                                self.timer.d.next = bit_cast::<16, 6>(self.cmd.val().burst_len) + 1_usize;
                                self.address.d.next = bit_cast::<32, 30>(self.cmd.val().byte_address) >> 2_usize;
                                self.cmd_fifo.read.next = true;
                            }
                            MIGInstruction::Read | MIGInstruction::ReadPrecharge => {
                                self.timer.d.next = bit_cast::<16, 6>(self.cmd.val().burst_len) + 1_usize;
                                self.address.d.next = bit_cast::<32, 30>(self.cmd.val().byte_address) >> 2_usize;
                                self.state.d.next = State::Reading;
                                self.cmd_fifo.read.next = true;
                            }
                            MIGInstruction::Refresh => {
                                self.state.d.next = State::Refresh;
                            }
                        }
                    }
                }
            }
            State::Reading => {
                if self.timer.q.val().any() {
                    self.read_fifo.data_in.next = *self._dram.get(&self.address.q.val()).unwrap_or(&Default::default());
                    self.read_fifo.write.next = true;
                    self.address.d.next = self.address.q.val() + 1_usize;
                } else {
                    self.state.d.next = State::Idle;
                }
            }
            State::Writing => {
                if self.timer.q.val().any() {
                    self._dram.insert(self.address.q.val(), self.write_fifo.data_out.val().data);
                    self.write_fifo.read.next = true;
                    self.address.d.next = self.address.q.val() + 1_usize;
                } else {
                    self.state.d.next = State::Idle;
                }
            }
            State::Refresh => {
                self.cmd_fifo.read.next = true;
                self.state.d.next = State::Idle;
            }
            State::Error => {}
        }

    }
    fn connect(&mut self) {
        self.calib_done.connect();
        self.clk_out.connect();
        self.reset_out.connect();
        self.p0_cmd.empty.connect();
        self.p0_cmd.full.connect();
        self.p0_wr.empty.connect();
        self.p0_wr.full.connect();
        self.p0_wr.count.connect();
        self.p0_wr.error.connect();
        self.p0_wr.underrun.connect();
        self.p0_rd.error.connect();
        self.p0_rd.count.connect();
        self.p0_rd.full.connect();
        self.p0_rd.empty.connect();
        self.p0_rd.data.connect();
        self.p0_rd.overflow.connect();
        self.mcb.link_connect_source();
        self.mcb.link_connect_dest();
        self.write_fifo.write_clock.connect();
        self.cmd_fifo.write_clock.connect();
        self.state.clk.connect();
        self.cmd_fifo.read.connect();
        self.cmd_fifo.data_in.connect();
        self.read_fifo.write.connect();
        self.read_fifo.write_clock.connect();
        self.timer.clk.connect();
        self.write_fifo.read_clock.connect();
        self.read_fifo.read_clock.connect();
        self.state.d.connect();
        self.write_fifo.write.connect();
        self.write_fifo.write_clock.connect();
        self.calib.clk.connect();
        self.read_fifo.data_in.connect();
        self.calib.d.connect();
        self.cmd_fifo.write.connect();
        self.timer.d.connect();
        self.cmd_fifo.read_clock.connect();
        self.read_fifo.read.connect();
        self.write_fifo.read.connect();
        self.write_fifo.data_in.connect();
        self.address.d.connect();
        self.cmd.connect();
        self.address.clk.connect();
    }
    fn hdl(&self) -> Verilog {
        Verilog::Wrapper(Wrapper {
            code: r##"
// assign mcb$dram_reset_not=1'b1;
// Unfortunately, the generated MIG for Spartan6 is not particularly
// useful for us, since it assumes the raw clock is running at memory
// speeds.  You are advised to edit the MIG directly, and change
// the PLL properties so that you can get the desired behavior.
// To keep our implementation as clean as possible, we handle this by
// patching the generated file before including them in the project.
    mig mig_inst(
          .mcb3_dram_dq                        (mcb$data_bus),
          .mcb3_dram_a                         (mcb$address),
          .mcb3_dram_ba                        (mcb$bank_select),
          .mcb3_dram_ras_n                     (mcb$row_address_strobe_not),
          .mcb3_dram_cas_n                     (mcb$column_address_strobe_not),
          .mcb3_dram_we_n                      (mcb$write_enable_not),
          .mcb3_dram_odt                       (mcb$on_die_termination),
          .mcb3_dram_cke                       (mcb$clock_enable),
          .mcb3_dram_dm                        (mcb$data_mask),
          .mcb3_dram_udqs                      (mcb$upper_byte_data_strobe),
          .mcb3_dram_udqs_n                    (mcb$upper_byte_data_strobe_neg),
          .mcb3_rzq                            (mcb$rzq),
          .mcb3_zio                            (mcb$zio),
          .mcb3_dram_udm                       (mcb$upper_data_mask),
          .c3_sys_clk                          (raw_sys_clk),
          .c3_calib_done                       (calib_done),
          .c3_sys_rst_i                        (reset),
          .c3_clk0                             (clk_out),
          .mcb3_dram_dqs                       (mcb$data_strobe_signal),
          .mcb3_dram_dqs_n                     (mcb$data_strobe_signal_neg),
          .mcb3_dram_ck                        (mcb$dram_clock),
          .mcb3_dram_ck_n                      (mcb$dram_clock_neg),
          .c3_p0_cmd_clk                       (p0_cmd$clock),
          .c3_p0_cmd_en                        (p0_cmd$enable),
          .c3_p0_cmd_instr                     (p0_cmd$cmd[2:0]), // Lowest 3 bits are the cmd
          .c3_p0_cmd_bl                        (p0_cmd$cmd[8:3]), // 6 bits for the burst length
          .c3_p0_cmd_byte_addr                 (p0_cmd$cmd[38:9]), // 30 bits for the byte address
          .c3_p0_cmd_empty                     (p0_cmd$empty),
          .c3_p0_cmd_full                      (p0_cmd$full),
          .c3_p0_wr_clk                        (p0_wr$clock),
          .c3_p0_wr_en                         (p0_wr$enable),
          .c3_p0_wr_mask                       (p0_wr$data[3:0]), // Lowest 4 bits are the byte mask
          .c3_p0_wr_data                       (p0_wr$data[35:4]), // Upper 32 bits are the data
          .c3_p0_wr_full                       (p0_wr$full),
          .c3_p0_wr_empty                      (p0_wr$empty),
          .c3_p0_wr_count                      (p0_wr$count),
          .c3_p0_wr_underrun                   (p0_wr$underrun),
          .c3_p0_wr_error                      (p0_wr$error),
          .c3_p0_rd_clk                        (p0_rd$clock),
          .c3_p0_rd_en                         (p0_rd$enable),
          .c3_p0_rd_data                       (p0_rd$data),
          .c3_p0_rd_full                       (p0_rd$full),
          .c3_p0_rd_empty                      (p0_rd$empty),
          .c3_p0_rd_count                      (p0_rd$count),
          .c3_p0_rd_overflow                   (p0_rd$overflow),
          .c3_p0_rd_error                      (p0_rd$error)
    );
"##.into(),
cores: r##"
(* blackbox *)
module mig #
(
   parameter C3_P0_MASK_SIZE           = 4,
   parameter C3_P0_DATA_PORT_SIZE      = 32,
   parameter C3_P1_MASK_SIZE           = 4,
   parameter C3_P1_DATA_PORT_SIZE      = 32,
   parameter DEBUG_EN                = 0,       
                                       // # = 1, Enable debug signals/controls,
                                       //   = 0, Disable debug signals/controls.
   parameter C3_MEMCLK_PERIOD        = 3200,       
                                       // Memory data transfer clock period
   parameter C3_CALIB_SOFT_IP        = "TRUE",       
                                       // # = TRUE, Enables the soft calibration logic,
                                       // # = FALSE, Disables the soft calibration logic.
   parameter C3_SIMULATION           = "FALSE",       
                                       // # = TRUE, Simulating the design. Useful to reduce the simulation time,
                                       // # = FALSE, Implementing the design.
   parameter C3_RST_ACT_LOW          = 0,       
                                       // # = 1 for active low reset,
                                       // # = 0 for active high reset.
   parameter C3_INPUT_CLK_TYPE       = "SINGLE_ENDED",       
                                       // input clock type DIFFERENTIAL or SINGLE_ENDED
   parameter C3_MEM_ADDR_ORDER       = "ROW_BANK_COLUMN",       
                                       // The order in which user address is provided to the memory controller,
                                       // ROW_BANK_COLUMN or BANK_ROW_COLUMN
   parameter C3_NUM_DQ_PINS          = 16,       
                                       // External memory data width
   parameter C3_MEM_ADDR_WIDTH       = 13,       
                                       // External memory address width
   parameter C3_MEM_BANKADDR_WIDTH   = 3        
                                       // External memory bank address width
)	
(
   inout  [C3_NUM_DQ_PINS-1:0]                      mcb3_dram_dq,
   output [C3_MEM_ADDR_WIDTH-1:0]                   mcb3_dram_a,
   output [C3_MEM_BANKADDR_WIDTH-1:0]               mcb3_dram_ba,
   output                                           mcb3_dram_ras_n,
   output                                           mcb3_dram_cas_n,
   output                                           mcb3_dram_we_n,
   output                                           mcb3_dram_odt,
   output                                           mcb3_dram_cke,
   output                                           mcb3_dram_dm,
   inout                                            mcb3_dram_udqs,
   inout                                            mcb3_dram_udqs_n,
   inout                                            mcb3_rzq,
   inout                                            mcb3_zio,
   output                                           mcb3_dram_udm,
   input                                            c3_sys_clk,
   input                                            c3_sys_rst_i,
   output                                           c3_calib_done,
   output                                           c3_clk0,
   output                                           c3_rst0,
   inout                                            mcb3_dram_dqs,
   inout                                            mcb3_dram_dqs_n,
   output                                           mcb3_dram_ck,
   output                                           mcb3_dram_ck_n,
   input		                            c3_p0_cmd_clk,
   input		                            c3_p0_cmd_en,
   input [2:0]	                                    c3_p0_cmd_instr,
   input [5:0]	                                    c3_p0_cmd_bl,
   input [29:0]	                                    c3_p0_cmd_byte_addr,
   output		                            c3_p0_cmd_empty,
   output		                            c3_p0_cmd_full,
   input		                            c3_p0_wr_clk,
   input		                            c3_p0_wr_en,
   input [C3_P0_MASK_SIZE - 1:0]	            c3_p0_wr_mask,
   input [C3_P0_DATA_PORT_SIZE - 1:0]	            c3_p0_wr_data,
   output		                            c3_p0_wr_full,
   output		                            c3_p0_wr_empty,
   output [6:0]	                                    c3_p0_wr_count,
   output		                            c3_p0_wr_underrun,
   output		                            c3_p0_wr_error,
   input		                            c3_p0_rd_clk,
   input		                            c3_p0_rd_en,
   output [C3_P0_DATA_PORT_SIZE - 1:0]	            c3_p0_rd_data,
   output		                            c3_p0_rd_full,
   output		                            c3_p0_rd_empty,
   output [6:0]	                                    c3_p0_rd_count,
   output		                            c3_p0_rd_overflow,
   output		                            c3_p0_rd_error
);
endmodule
    "##.into(),
        })
    }
}

#[test]
fn test_mig_gen() {
    let mig = MemoryInterfaceGenerator::default();
    let vlog = generate_verilog_unchecked(&mig);
}