1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use crate::core::prelude::*;
use crate::widgets::dff::DFF;

#[derive(LogicBlock, Default)]
pub struct BitSynchronizer {
    pub sig_in: Signal<In, Bit>,
    pub sig_out: Signal<Out, Bit>,
    pub clock: Signal<In, Clock>,
    dff0: DFF<Bit>,
    dff1: DFF<Bit>,
}

impl Logic for BitSynchronizer {
    #[hdl_gen]
    fn update(&mut self) {
        self.dff0.clk.next = self.clock.val();
        self.dff1.clk.next = self.clock.val();

        self.dff0.d.next = self.sig_in.val();
        self.dff1.d.next = self.dff0.q.val();
        self.sig_out.next = self.dff1.q.val();
    }
}

#[test]
fn sync_is_synthesizable() {
    top_wrap!(BitSynchronizer, Wrapper);
    let mut dev: Wrapper = Default::default();
    dev.uut.clock.connect();
    dev.uut.sig_in.connect();
    dev.connect_all();
    yosys_validate("sync", &generate_verilog(&dev)).unwrap();
    println!("{}", generate_verilog(&dev));
}

#[derive(Copy, Clone, Debug, PartialEq, LogicState)]
pub enum SyncSenderState {
    Idle,
    WaitAck,
    WaitDone,
}

#[derive(LogicBlock, Default)]
pub struct SyncSender<T: Synth> {
    pub sig_in: Signal<In, T>,
    pub clock: Signal<In, Clock>,
    pub sig_cross: Signal<Out, T>,
    pub flag_out: Signal<Out, Bit>,
    pub ack_in: Signal<In, Bit>,
    pub busy: Signal<Out, Bit>,
    pub send: Signal<In, Bit>,
    hold: DFF<T>,
    state: DFF<SyncSenderState>,
    sync: BitSynchronizer,
}

impl<T: Synth> Logic for SyncSender<T> {
    #[hdl_gen]
    fn update(&mut self) {
        // Connect the clocks
        self.state.clk.next = self.clock.val();
        self.sync.clock.next = self.clock.val();
        self.hold.clk.next = self.clock.val();

        // By default, the hold DFF does not change
        self.hold.d.next = self.hold.q.val();
        self.sig_cross.next = self.hold.q.val();
        self.flag_out.next = false.into();
        self.sync.sig_in.next = self.ack_in.val();

        // State machine
        self.state.d.next = self.state.q.val();
        self.busy.next = true;
        match self.state.q.val() {
            SyncSenderState::Idle => {
                self.busy.next = false.into();
                if self.send.val() {
                    // Sample the input signal
                    self.hold.d.next = self.sig_in.val();
                    self.state.d.next = SyncSenderState::WaitAck.into();
                    // Indicate that the output is valid
                    self.flag_out.next = true;
                }
            }
            SyncSenderState::WaitAck => {
                self.flag_out.next = true;
                if self.sync.sig_out.val() {
                    self.state.d.next = SyncSenderState::WaitDone.into();
                    self.flag_out.next = false.into();
                }
            }
            SyncSenderState::WaitDone => {
                if !self.sync.sig_out.val() {
                    self.hold.d.next = self.sig_in.val();
                    // Indicate that the output is valid
                    self.flag_out.next = true;
                    self.state.d.next = SyncSenderState::Idle.into();
                }
            }
        }
    }
}

#[test]
fn sync_sender_is_synthesizable() {
    top_wrap!(SyncSender<Bits<8>>, Wrapper);
    let mut dev: Wrapper = Default::default();
    dev.uut.clock.connect();
    dev.uut.sig_in.connect();
    dev.uut.ack_in.connect();
    dev.uut.send.connect();
    dev.connect_all();
    println!("{}", generate_verilog(&dev));
    yosys_validate("sync_send", &generate_verilog(&dev)).unwrap();
}

#[derive(Copy, Clone, Debug, PartialEq, LogicState)]
pub enum SyncReceiverState {
    WaitSteady,
    WaitDone,
}

#[derive(LogicBlock, Default)]
pub struct SyncReceiver<T: Synth> {
    pub sig_out: Signal<Out, T>,
    pub clock: Signal<In, Clock>,
    pub sig_cross: Signal<In, T>,
    pub flag_in: Signal<In, Bit>,
    pub ack_out: Signal<Out, Bit>,
    pub update: Signal<Out, Bit>,
    hold: DFF<T>,
    update_delay: DFF<Bit>,
    state: DFF<SyncReceiverState>,
    sync: BitSynchronizer,
}

impl<T: Synth> Logic for SyncReceiver<T> {
    #[hdl_gen]
    fn update(&mut self) {
        self.state.clk.next = self.clock.val();
        self.sync.clock.next = self.clock.val();
        self.hold.clk.next = self.clock.val();
        self.update_delay.clk.next = self.clock.val();

        self.hold.d.next = self.hold.q.val();
        self.sig_out.next = self.hold.q.val();
        self.ack_out.next = false.into();
        self.sync.sig_in.next = self.flag_in.val();

        self.state.d.next = self.state.q.val();
        self.update.next = self.update_delay.q.val();
        self.update_delay.d.next = false.into();
        match self.state.q.val() {
            SyncReceiverState::WaitSteady => {
                if self.sync.sig_out.val() {
                    self.ack_out.next = true;
                    self.state.d.next = SyncReceiverState::WaitDone.into();
                }
            }
            SyncReceiverState::WaitDone => {
                if !self.sync.sig_out.val() {
                    self.ack_out.next = false.into();
                    self.update_delay.d.next = true;
                    self.hold.d.next = self.sig_cross.val().into();
                    self.state.d.next = SyncReceiverState::WaitSteady.into();
                } else {
                    self.ack_out.next = true;
                }
            }
        }
    }
}

#[test]
fn sync_receiver_is_synthesizable() {
    top_wrap!(SyncReceiver<Bits<8>>, Wrapper);
    let mut dev: Wrapper = Default::default();
    dev.uut.clock.connect();
    dev.uut.sig_cross.connect();
    dev.uut.flag_in.connect();
    dev.connect_all();
    println!("{}", generate_verilog(&dev));
    yosys_validate("sync_recv", &generate_verilog(&dev)).unwrap();
}

#[derive(LogicBlock, Default)]
pub struct VectorSynchronizer<T: Synth> {
    // The input interface...
    pub clock_in: Signal<In, Clock>,
    pub sig_in: Signal<In, T>,
    pub busy: Signal<Out, Bit>,
    pub send: Signal<In, Bit>,
    // The output interface...
    pub clock_out: Signal<In, Clock>,
    pub sig_out: Signal<Out, T>,
    pub update: Signal<Out, Bit>,
    // The two pieces of the synchronizer
    sender: SyncSender<T>,
    recv: SyncReceiver<T>,
}

impl<T: Synth> Logic for VectorSynchronizer<T> {
    #[hdl_gen]
    fn update(&mut self) {
        // Clocks...
        self.sender.clock.next = self.clock_in.val();
        self.recv.clock.next = self.clock_out.val();
        // Wire the inputs..
        self.sender.sig_in.next = self.sig_in.val();
        self.busy.next = self.sender.busy.val();
        self.sender.send.next = self.send.val();
        // Wire the outputs..
        self.sig_out.next = self.recv.sig_out.val();
        self.update.next = self.recv.update.val();
        // Cross wire the two parts
        self.recv.sig_cross.next = self.sender.sig_cross.val();
        self.recv.flag_in.next = self.sender.flag_out.val();
        self.sender.ack_in.next = self.recv.ack_out.val();
    }
}

#[test]
fn test_vec_sync_synthesizable() {
    top_wrap!(VectorSynchronizer<Bits<8>>, Wrapper);
    let mut dev: Wrapper = Default::default();
    dev.uut.clock_in.connect();
    dev.uut.sig_in.connect();
    dev.uut.send.connect();
    dev.uut.clock_out.connect();
    dev.connect_all();
    yosys_validate("vsync", &generate_verilog(&dev)).unwrap();
}