rust_hdl_widgets/fifo/
async_fifo.rs1use crate::fifo::fifo_logic::{FIFOReadLogic, FIFOWriteLogic};
2use crate::ramrom::ram::RAM;
3use crate::synchronizer::VectorSynchronizer;
4use rust_hdl_core::prelude::*;
5
6#[macro_export]
7macro_rules! declare_async_fifo {
8 ($name: ident, $kind: ty, $count: expr, $block: expr) => {
9 pub type $name = AsynchronousFIFO<$kind, { clog2($count) }, { clog2($count) + 1 }, $block>;
10 };
11}
12
13#[derive(LogicBlock, Default)]
14pub struct AsynchronousFIFO<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> {
15 pub read: Signal<In, Bit>,
17 pub data_out: Signal<Out, D>,
18 pub empty: Signal<Out, Bit>,
19 pub almost_empty: Signal<Out, Bit>,
20 pub underflow: Signal<Out, Bit>,
21 pub read_clock: Signal<In, Clock>,
22 pub read_fill: Signal<Out, Bits<NP1>>,
23 pub write: Signal<In, Bit>,
25 pub data_in: Signal<In, D>,
26 pub full: Signal<Out, Bit>,
27 pub almost_full: Signal<Out, Bit>,
28 pub overflow: Signal<Out, Bit>,
29 pub write_clock: Signal<In, Clock>,
30 pub write_fill: Signal<Out, Bits<NP1>>,
31 ram: RAM<D, N>,
33 read_logic: FIFOReadLogic<D, N, NP1, BLOCK_SIZE>,
35 write_logic: FIFOWriteLogic<D, N, NP1, BLOCK_SIZE>,
37 write_to_read: VectorSynchronizer<Bits<NP1>>,
39 read_to_write: VectorSynchronizer<Bits<NP1>>,
41}
42
43impl<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> Logic
44 for AsynchronousFIFO<D, N, NP1, BLOCK_SIZE>
45{
46 #[hdl_gen]
47 fn update(&mut self) {
48 self.read_logic.clock.next = self.read_clock.val();
50 self.read_logic.read.next = self.read.val();
51 self.empty.next = self.read_logic.empty.val();
52 self.almost_empty.next = self.read_logic.almost_empty.val();
53 self.data_out.next = self.read_logic.data_out.val();
54 self.underflow.next = self.read_logic.underflow.val();
55 self.write_logic.clock.next = self.write_clock.val();
57 self.overflow.next = self.write_logic.overflow.val();
58 self.almost_full.next = self.write_logic.almost_full.val();
59 self.full.next = self.write_logic.full.val();
60 self.write_logic.write.next = self.write.val();
61 self.write_logic.data_in.next = self.data_in.val();
62 self.ram.write_clock.next = self.write_logic.ram_write_clock.val();
64 self.ram.write_enable.next = self.write_logic.ram_write_enable.val();
65 self.ram.write_address.next = self.write_logic.ram_write_address.val();
66 self.ram.write_data.next = self.write_logic.ram_write_data.val();
67 self.ram.read_clock.next = self.read_logic.ram_read_clock.val();
68 self.ram.read_address.next = self.read_logic.ram_read_address.val();
69 self.read_logic.ram_read_data.next = self.ram.read_data.val();
70 self.read_to_write.clock_in.next = self.read_clock.val();
72 self.read_to_write.clock_out.next = self.write_clock.val();
73 self.read_to_write.sig_in.next = self.read_logic.read_address_out.val();
74 self.write_logic.read_address.next = self.read_to_write.sig_out.val();
75 self.read_to_write.send.next = !self.read_to_write.busy.val();
76 self.write_to_read.clock_in.next = self.write_clock.val();
78 self.write_to_read.clock_out.next = self.read_clock.val();
79 self.write_to_read.sig_in.next = self.write_logic.write_address_delayed.val();
80 self.read_logic.write_address_delayed.next = self.write_to_read.sig_out.val();
81 self.write_to_read.send.next = !self.write_to_read.busy.val();
82 self.write_fill.next = self.write_logic.fill_level.val();
84 self.read_fill.next = self.read_logic.fill_level.val();
85 }
86}
87
88#[test]
89fn component_async_fifo_is_synthesizable() {
90 declare_async_fifo!(TFifo, Bits<8>, 16, 1);
91 let mut dev: TFifo = Default::default();
92 dev.connect_all();
93 yosys_validate("async_fifo", &generate_verilog(&dev)).unwrap();
94}