1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::dff::DFF;
use crate::dff_setup;
use crate::ramrom::ram::RAM;
use crate::ramrom::sync_rom::SyncROM;
use rust_hdl_core::prelude::*;
use rust_hdl_core::signed::ToSignedBits;

#[derive(Clone, Debug, LogicState, Copy, PartialEq)]
enum MACFIRState {
    Idle,
    Dwell,
    Compute,
    CenterTap,
    Write,
}

#[derive(LogicBlock)]
pub struct MultiplyAccumulateSymmetricFiniteImpulseResponseFilter<const ADDR_BITS: usize> {
    pub data_in: Signal<In, Signed<16>>,
    pub strobe_in: Signal<In, Bit>,
    pub data_out: Signal<Out, Signed<48>>,
    pub strobe_out: Signal<Out, Bit>,
    pub clock: Signal<In, Clock>,
    pub busy: Signal<Out, Bit>,
    coeff_memory: SyncROM<Signed<16>, ADDR_BITS>,
    left_bank: RAM<Signed<16>, ADDR_BITS>,
    right_bank: RAM<Signed<16>, ADDR_BITS>,
    // Points to where the next data sample goes (delay 0)
    head_ptr: DFF<Bits<ADDR_BITS>>,
    // Points to where the left data sample comes from
    left_ptr: Signal<Local, Bits<ADDR_BITS>>,
    // Points to where the right data sample comes from
    right_ptr: Signal<Local, Bits<ADDR_BITS>>,
    // Index pointer used
    index: DFF<Bits<ADDR_BITS>>,
    // Number of iterations (taps-1/2)
    iters: Constant<Bits<ADDR_BITS>>,
    // Size of the data buffer (2**ADDR_BITS - 1)
    bufsize: Constant<Bits<32>>,
    // Number of taps
    taps: Constant<Bits<32>>,
    // Sample from left and right banks
    left_sample: Signal<Local, Signed<16>>,
    right_sample: Signal<Local, Signed<16>>,
    // Accumulator
    accum: DFF<Signed<48>>,
    // FIR state
    state: DFF<MACFIRState>,
    // The output of the MAC slice
    mac_output: Signal<Local, Signed<48>>,
    // The next write location for data
    data_write: Signal<Local, Bits<ADDR_BITS>>,
}

impl<const ADDR_BITS: usize> Logic
    for MultiplyAccumulateSymmetricFiniteImpulseResponseFilter<ADDR_BITS>
{
    #[hdl_gen]
    fn update(&mut self) {
        // Connect the clocks
        self.coeff_memory.clock.next = self.clock.val();
        self.left_bank.read_clock.next = self.clock.val();
        self.left_bank.write_clock.next = self.clock.val();
        self.right_bank.read_clock.next = self.clock.val();
        self.right_bank.write_clock.next = self.clock.val();
        dff_setup!(self, clock, head_ptr, index, accum, state);
        // Connect the head pointer to the write address of the two bank memories
        self.left_bank.write_address.next = self.head_ptr.d.val();
        self.right_bank.write_address.next = self.head_ptr.d.val();
        // Both banks receive the same data...
        self.left_bank.write_data.next = self.data_in.val();
        self.right_bank.write_data.next = self.data_in.val();
        // The write enable is controlled by the external strobe
        self.left_bank.write_enable.next = self.strobe_in.val();
        self.right_bank.write_enable.next = self.strobe_in.val();
        // The read on the two banks is different...
        self.left_ptr.next = bit_cast::<{ ADDR_BITS }, 32>(
            bit_cast::<32, { ADDR_BITS }>(self.head_ptr.q.val()) + self.bufsize.val()
                - self.taps.val()
                + 1
                + bit_cast::<32, { ADDR_BITS }>(self.index.q.val()),
        );
        // This is a bit awkward.  We want to do wrapping arithmetic, so we need an extra bit,
        // but because of partial const generic support in Rust, we use 32 bits as an
        // upper bound.  This should synthesize just fine.
        self.right_ptr.next = bit_cast::<{ ADDR_BITS }, 32>(
            bit_cast::<32, { ADDR_BITS }>(self.head_ptr.q.val()) + self.bufsize.val()
                - bit_cast::<32, { ADDR_BITS }>(self.index.q.val()),
        );
        self.left_bank.read_address.next = self.left_ptr.val();
        self.right_bank.read_address.next = self.right_ptr.val();
        self.coeff_memory.address.next = self.index.q.val();
        self.left_sample.next = self.left_bank.read_data.val();
        self.right_sample.next = self.right_bank.read_data.val();
        if self.state.q.val() == MACFIRState::CenterTap {
            self.right_sample.next = 0.into();
        }
        // Wire up the accumulator
        self.mac_output.next = signed_bit_cast::<48, 32>(
            (self.left_sample.val() + self.right_sample.val()) * (self.coeff_memory.data.val()),
        ) + self.accum.q.val();
        if self.state.q.val() == MACFIRState::Idle {
            self.mac_output.next = 0.into();
        }
        // Latch prevention...
        self.data_write.next = self.head_ptr.q.val();
        // The output is wired to the accumulator
        self.data_out.next = self.accum.q.val();
        self.strobe_out.next = false;
        self.busy.next = self.state.q.val() != MACFIRState::Idle;
        // State machine.
        match self.state.q.val() {
            MACFIRState::Idle => {
                if self.strobe_in.val() {
                    self.state.d.next = MACFIRState::Dwell;
                }
            }
            MACFIRState::Dwell => {
                self.index.d.next = self.index.q.val() + 1;
                self.state.d.next = MACFIRState::Compute;
            }
            MACFIRState::Compute => {
                self.index.d.next = self.index.q.val() + 1;
                self.accum.d.next = self.mac_output.val();
                if self.index.q.val() == self.iters.val() {
                    self.state.d.next = MACFIRState::CenterTap;
                }
            }
            MACFIRState::CenterTap => {
                self.index.d.next = self.index.q.val() + 1;
                self.accum.d.next = self.mac_output.val();
                self.state.d.next = MACFIRState::Write;
            }
            MACFIRState::Write => {
                self.strobe_out.next = true;
                self.state.d.next = MACFIRState::Idle;
                // Update the data write location (head pointer)
                self.head_ptr.d.next = self.head_ptr.q.val() + 1;
                // Reset the counter
                self.index.d.next = 0.into();
                self.accum.d.next = 0.into();
            }
            _ => {
                self.state.d.next = MACFIRState::Idle;
            }
        }
        self.data_write.next = self.head_ptr.q.val();
    }
}

impl<const ADDR_BITS: usize> MultiplyAccumulateSymmetricFiniteImpulseResponseFilter<ADDR_BITS> {
    pub fn new(coeffs: &[i16]) -> Self {
        let taps = coeffs.len();
        assert!({ ADDR_BITS } >= clog2(taps));
        // Check for symmetry
        for ndx in 0..coeffs.len() {
            assert_eq!(coeffs[ndx], coeffs[taps - 1 - ndx]);
        }
        // Check for odd length
        assert_eq!(coeffs.len() % 2, 1);
        // Create the compact array
        let clen = (coeffs.len() + 1) / 2;
        let coeff_short = coeffs[0..clen].iter().map(|x| *x).collect::<Vec<_>>();
        let coeffs = coeff_short
            .iter()
            .map(|x| x.to_signed_bits())
            .collect::<Vec<_>>();
        Self {
            data_in: Default::default(),
            strobe_in: Default::default(),
            data_out: Default::default(),
            strobe_out: Default::default(),
            clock: Default::default(),
            busy: Default::default(),
            coeff_memory: coeffs.into_iter().into(),
            left_bank: Default::default(),
            right_bank: Default::default(),
            head_ptr: Default::default(),
            left_ptr: Default::default(),
            right_ptr: Default::default(),
            index: Default::default(),
            iters: Constant::new(((taps - 1) / 2).to_bits()),
            bufsize: Constant::new(Bits::<ADDR_BITS>::count().to_bits()),
            left_sample: Default::default(),
            right_sample: Default::default(),
            accum: Default::default(),
            state: Default::default(),
            mac_output: Default::default(),
            data_write: Default::default(),
            taps: Constant::new(taps.to_bits()),
        }
    }
}

#[test]
fn test_fir_is_synthesizable() {
    let coeffs = [1, -2, 3, -2, 1];
    let mut uut = MultiplyAccumulateSymmetricFiniteImpulseResponseFilter::<3>::new(&coeffs);
    uut.connect_all();
    let vlog = generate_verilog(&uut);
    yosys_validate("fir", &vlog).unwrap();
}