1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
use crate::dff::DFF;
use crate::dff_setup;
use crate::ramrom::ram::RAM;
use crate::ramrom::sync_rom::SyncROM;
use rust_hdl_core::prelude::*;
use rust_hdl_core::signed::ToSignedBits;
#[derive(Clone, Debug, LogicState, Copy, PartialEq)]
enum MACFIRState {
Idle,
Dwell,
Compute,
CenterTap,
Write,
}
#[derive(LogicBlock)]
pub struct MultiplyAccumulateSymmetricFiniteImpulseResponseFilter<const ADDR_BITS: usize> {
pub data_in: Signal<In, Signed<16>>,
pub strobe_in: Signal<In, Bit>,
pub data_out: Signal<Out, Signed<48>>,
pub strobe_out: Signal<Out, Bit>,
pub clock: Signal<In, Clock>,
pub busy: Signal<Out, Bit>,
coeff_memory: SyncROM<Signed<16>, ADDR_BITS>,
left_bank: RAM<Signed<16>, ADDR_BITS>,
right_bank: RAM<Signed<16>, ADDR_BITS>,
head_ptr: DFF<Bits<ADDR_BITS>>,
left_ptr: Signal<Local, Bits<ADDR_BITS>>,
right_ptr: Signal<Local, Bits<ADDR_BITS>>,
index: DFF<Bits<ADDR_BITS>>,
iters: Constant<Bits<ADDR_BITS>>,
bufsize: Constant<Bits<32>>,
taps: Constant<Bits<32>>,
left_sample: Signal<Local, Signed<16>>,
right_sample: Signal<Local, Signed<16>>,
accum: DFF<Signed<48>>,
state: DFF<MACFIRState>,
mac_output: Signal<Local, Signed<48>>,
data_write: Signal<Local, Bits<ADDR_BITS>>,
}
impl<const ADDR_BITS: usize> Logic
for MultiplyAccumulateSymmetricFiniteImpulseResponseFilter<ADDR_BITS>
{
#[hdl_gen]
fn update(&mut self) {
self.coeff_memory.clock.next = self.clock.val();
self.left_bank.read_clock.next = self.clock.val();
self.left_bank.write_clock.next = self.clock.val();
self.right_bank.read_clock.next = self.clock.val();
self.right_bank.write_clock.next = self.clock.val();
dff_setup!(self, clock, head_ptr, index, accum, state);
self.left_bank.write_address.next = self.head_ptr.d.val();
self.right_bank.write_address.next = self.head_ptr.d.val();
self.left_bank.write_data.next = self.data_in.val();
self.right_bank.write_data.next = self.data_in.val();
self.left_bank.write_enable.next = self.strobe_in.val();
self.right_bank.write_enable.next = self.strobe_in.val();
self.left_ptr.next = bit_cast::<{ ADDR_BITS }, 32>(
bit_cast::<32, { ADDR_BITS }>(self.head_ptr.q.val()) + self.bufsize.val()
- self.taps.val()
+ 1
+ bit_cast::<32, { ADDR_BITS }>(self.index.q.val()),
);
self.right_ptr.next = bit_cast::<{ ADDR_BITS }, 32>(
bit_cast::<32, { ADDR_BITS }>(self.head_ptr.q.val()) + self.bufsize.val()
- bit_cast::<32, { ADDR_BITS }>(self.index.q.val()),
);
self.left_bank.read_address.next = self.left_ptr.val();
self.right_bank.read_address.next = self.right_ptr.val();
self.coeff_memory.address.next = self.index.q.val();
self.left_sample.next = self.left_bank.read_data.val();
self.right_sample.next = self.right_bank.read_data.val();
if self.state.q.val() == MACFIRState::CenterTap {
self.right_sample.next = 0.into();
}
self.mac_output.next = signed_bit_cast::<48, 32>(
(self.left_sample.val() + self.right_sample.val()) * (self.coeff_memory.data.val()),
) + self.accum.q.val();
if self.state.q.val() == MACFIRState::Idle {
self.mac_output.next = 0.into();
}
self.data_write.next = self.head_ptr.q.val();
self.data_out.next = self.accum.q.val();
self.strobe_out.next = false;
self.busy.next = self.state.q.val() != MACFIRState::Idle;
match self.state.q.val() {
MACFIRState::Idle => {
if self.strobe_in.val() {
self.state.d.next = MACFIRState::Dwell;
}
}
MACFIRState::Dwell => {
self.index.d.next = self.index.q.val() + 1;
self.state.d.next = MACFIRState::Compute;
}
MACFIRState::Compute => {
self.index.d.next = self.index.q.val() + 1;
self.accum.d.next = self.mac_output.val();
if self.index.q.val() == self.iters.val() {
self.state.d.next = MACFIRState::CenterTap;
}
}
MACFIRState::CenterTap => {
self.index.d.next = self.index.q.val() + 1;
self.accum.d.next = self.mac_output.val();
self.state.d.next = MACFIRState::Write;
}
MACFIRState::Write => {
self.strobe_out.next = true;
self.state.d.next = MACFIRState::Idle;
self.head_ptr.d.next = self.head_ptr.q.val() + 1;
self.index.d.next = 0.into();
self.accum.d.next = 0.into();
}
_ => {
self.state.d.next = MACFIRState::Idle;
}
}
self.data_write.next = self.head_ptr.q.val();
}
}
impl<const ADDR_BITS: usize> MultiplyAccumulateSymmetricFiniteImpulseResponseFilter<ADDR_BITS> {
pub fn new(coeffs: &[i16]) -> Self {
let taps = coeffs.len();
assert!({ ADDR_BITS } >= clog2(taps));
for ndx in 0..coeffs.len() {
assert_eq!(coeffs[ndx], coeffs[taps - 1 - ndx]);
}
assert_eq!(coeffs.len() % 2, 1);
let clen = (coeffs.len() + 1) / 2;
let coeff_short = coeffs[0..clen].iter().map(|x| *x).collect::<Vec<_>>();
let coeffs = coeff_short
.iter()
.map(|x| x.to_signed_bits())
.collect::<Vec<_>>();
Self {
data_in: Default::default(),
strobe_in: Default::default(),
data_out: Default::default(),
strobe_out: Default::default(),
clock: Default::default(),
busy: Default::default(),
coeff_memory: coeffs.into_iter().into(),
left_bank: Default::default(),
right_bank: Default::default(),
head_ptr: Default::default(),
left_ptr: Default::default(),
right_ptr: Default::default(),
index: Default::default(),
iters: Constant::new(((taps - 1) / 2).to_bits()),
bufsize: Constant::new(Bits::<ADDR_BITS>::count().to_bits()),
left_sample: Default::default(),
right_sample: Default::default(),
accum: Default::default(),
state: Default::default(),
mac_output: Default::default(),
data_write: Default::default(),
taps: Constant::new(taps.to_bits()),
}
}
}
#[test]
fn test_fir_is_synthesizable() {
let coeffs = [1, -2, 3, -2, 1];
let mut uut = MultiplyAccumulateSymmetricFiniteImpulseResponseFilter::<3>::new(&coeffs);
uut.connect_all();
let vlog = generate_verilog(&uut);
yosys_validate("fir", &vlog).unwrap();
}