1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use crate::edge_detector::EdgeDetector;
use crate::spi::master::{SPIConfig, SPIWiresSlave};
use crate::synchronizer::BitSynchronizer;
use crate::{dff::DFF, dff_setup};
use rust_hdl_core::prelude::*;

#[derive(Copy, Clone, PartialEq, Debug, LogicState)]
enum SPISlaveState {
    Boot,
    Idle,
    Armed,
    Capture,
    Hold,
    Update,
    Settle,
    Waiting,
    Hangup,
    Disabled,
}

/// The [SPISlave] is mostly meant for testing the [SPIMaster], but you can
/// use it to implement a SPI endpoint in the FPGA if you want to.  This [SPISlave]
/// is not very robust, so be cautious with using it.  In particular, with a very
/// badly behaved SPI master, it may not operate as expected.
#[derive(LogicBlock)]
pub struct SPISlave<const N: usize> {
    /// The clock driving the [SPISlave]
    pub clock: Signal<In, Clock>,
    /// The bus connecting us to the [SPIMaster] or an external SPI bus.
    pub wires: SPIWiresSlave,
    /// Raise thie `disabled` signal if you want the [SPISlave] to ignore the `wires` signals.
    pub disabled: Signal<In, Bit>,
    /// Indicates the [SPISlave] is busy (typically, receiving data from the [SPIMaster].
    pub busy: Signal<Out, Bit>,
    /// Data received from the [SPIMaster] is output on these wires.
    pub data_inbound: Signal<Out, Bits<N>>,
    /// Assert for a single cycle to latch the data to be sent back to the [SPIMaster] on the MISO line.  Latches
    /// `data_outbound`,`bits` and `continued_transaction` when asserted.
    pub start_send: Signal<In, Bit>,
    /// Data destined for the [SPIMaster] on the next transaction.
    pub data_outbound: Signal<In, Bits<N>>,
    /// Number of bits to send.  Capped at 16 bits (which corresponds to 64K bits on the send - not realistic).
    pub bits: Signal<In, Bits<16>>,
    /// Set this to true to indicate that the next transaction will be continued from this one (i.e., do not hangup at the end).
    pub continued_transaction: Signal<In, Bit>,
    /// A flag that indicates the inbound data is valid.
    pub transfer_done: Signal<Out, Bit>,
    miso_flop: DFF<Bit>,
    done_flop: DFF<Bit>,
    register_out: DFF<Bits<N>>,
    register_in: DFF<Bits<N>>,
    state: DFF<SPISlaveState>,
    pointer: DFF<Bits<16>>,
    bits_saved: DFF<Bits<16>>,
    continued_saved: DFF<Bit>,
    capture_detector: EdgeDetector,
    advance_detector: EdgeDetector,
    edge_detector: EdgeDetector,
    mclk_synchronizer: BitSynchronizer,
    csel_synchronizer: BitSynchronizer,
    escape: DFF<Bits<16>>,
    clocks_per_baud: Constant<Bits<16>>,
    cpha: Constant<Bit>,
    cs_off: Constant<Bit>,
    boot_delay: DFF<Bits<4>>,
}

//
// Here is a table of the SPI setup:
// CPOL  CPHA  EDGE  ACTION
//  0     0     R     Sample
//  0     0     F     Change
//  0     1     R     Change
//  0     1     F     Sample
//  1     0     R     Change
//  1     0     F     Sample
//  1     1     R     Sample
//  1     1     F     Change
//
// So Sample on Rising edge if CPOL == CPHA
// Also, CPHA decides if we start in the sample state or in the change state
impl<const N: usize> SPISlave<N> {
    /// Generate a new [SPISlave] with the given [SPIConfig]
    ///
    /// # Arguments
    ///
    /// * `config`: The [SPIConfig] that configures the slave receiver.
    ///
    /// returns: SPISlave<{ N }>
    ///
    /// # Examples
    ///
    /// See [ADS868XSimulator] for an example of how a [SPISlave] can be used.
    pub fn new(config: SPIConfig) -> Self {
        // Because the synchronizers introduce a 2 clock delay, in the non-phased
        // modes, we need to be able to react quickly enough to capture the first
        // data edge.  Short of a new design, I have added this clock speed constraint.
        assert!(config.cpha | (config.clock_speed >= 40 * config.speed_hz));
        Self {
            clock: Default::default(),
            wires: Default::default(),
            disabled: Default::default(),
            busy: Default::default(),
            data_inbound: Default::default(),
            start_send: Default::default(),
            data_outbound: Default::default(),
            bits: Default::default(),
            continued_transaction: Default::default(),
            transfer_done: Default::default(),
            miso_flop: Default::default(),
            done_flop: Default::default(),
            register_out: Default::default(),
            register_in: Default::default(),
            state: Default::default(),
            pointer: Default::default(),
            bits_saved: Default::default(),
            continued_saved: Default::default(),
            capture_detector: EdgeDetector::new(!(config.cpol ^ config.cpha)),
            advance_detector: EdgeDetector::new(config.cpol ^ config.cpha),
            edge_detector: EdgeDetector::new(!config.cs_off),
            mclk_synchronizer: BitSynchronizer::default(),
            csel_synchronizer: BitSynchronizer::default(),
            escape: Default::default(),
            clocks_per_baud: Constant::new((2 * config.clock_speed / config.speed_hz).into()),
            cpha: Constant::new(config.cpha),
            cs_off: Constant::new(config.cs_off),
            boot_delay: Default::default(),
        }
    }
}

impl<const N: usize> Logic for SPISlave<N> {
    #[hdl_gen]
    fn update(&mut self) {
        dff_setup!(
            self,
            clock,
            miso_flop,
            done_flop,
            register_out,
            register_in,
            state,
            pointer,
            bits_saved,
            continued_saved,
            escape,
            boot_delay
        );
        clock!(
            self,
            clock,
            capture_detector,
            advance_detector,
            edge_detector,
            mclk_synchronizer,
            csel_synchronizer
        );
        // Connect the detectors
        self.capture_detector.input_signal.next = self.mclk_synchronizer.sig_out.val();
        self.advance_detector.input_signal.next = self.mclk_synchronizer.sig_out.val();
        self.edge_detector.input_signal.next = self.csel_synchronizer.sig_out.val();
        // Connect the synchronizers
        self.mclk_synchronizer.sig_in.next = self.wires.mclk.val();
        self.csel_synchronizer.sig_in.next = self.wires.msel.val();
        // Logic
        self.busy.next = (self.state.q.val() != SPISlaveState::Idle)
            | (self.csel_synchronizer.sig_out.val() != self.cs_off.val());
        if self.state.q.val() != SPISlaveState::Disabled {
            self.wires.miso.next = self.miso_flop.q.val();
        } else {
            self.wires.miso.next = true;
        }
        self.data_inbound.next = self.register_in.q.val();
        self.transfer_done.next = self.done_flop.q.val();
        self.done_flop.d.next = false;
        self.miso_flop.d.next = self
            .register_out
            .q
            .val()
            .get_bit(self.pointer.q.val().index());
        self.boot_delay.d.next = self.boot_delay.q.val() + 1;
        match self.state.q.val() {
            SPISlaveState::Boot => {
                if self.boot_delay.q.val() == 8 {
                    self.state.d.next = SPISlaveState::Idle;
                }
            }
            SPISlaveState::Idle => {
                if self.edge_detector.edge_signal.val() {
                    self.register_in.d.next = 0.into();
                    self.state.d.next = SPISlaveState::Waiting;
                    self.pointer.d.next = 0.into();
                    self.escape.d.next = 0.into();
                } else if self.start_send.val() {
                    self.register_out.d.next = self.data_outbound.val();
                    self.bits_saved.d.next = self.bits.val();
                    self.continued_saved.d.next = self.continued_transaction.val();
                    self.pointer.d.next = self.bits.val() - 1;
                    self.register_in.d.next = 0.into();
                    self.state.d.next = SPISlaveState::Armed;
                } else if self.disabled.val() {
                    self.state.d.next = SPISlaveState::Disabled;
                }
            }
            SPISlaveState::Armed => {
                if self.csel_synchronizer.sig_out.val() != self.cs_off.val() {
                    if self.cpha.val() & !self.continued_saved.q.val() {
                        self.state.d.next = SPISlaveState::Waiting;
                    } else {
                        self.state.d.next = SPISlaveState::Settle;
                    }
                }
            }
            SPISlaveState::Waiting => {
                if self.advance_detector.edge_signal.val() {
                    self.state.d.next = SPISlaveState::Settle;
                }
                // Hangup condition.  CSEL should remain low for the entire transaction.
                if self.cpha.val()
                    & !self.continued_saved.q.val()
                    & (self.csel_synchronizer.sig_out.val() == self.cs_off.val())
                {
                    self.state.d.next = SPISlaveState::Idle;
                }
                if !self.cpha.val() & (self.csel_synchronizer.sig_out.val() == self.cs_off.val()) {
                    self.escape.d.next = self.escape.q.val() + 1;
                    if self.escape.q.val().all() {
                        self.state.d.next = SPISlaveState::Idle;
                    }
                }
            }
            SPISlaveState::Settle => {
                if self.capture_detector.edge_signal.val() {
                    self.state.d.next = SPISlaveState::Capture;
                }
                // Hangup condition.  CSEL should remain low for the entire transaction.
                if self.csel_synchronizer.sig_out.val() == self.cs_off.val() {
                    self.state.d.next = SPISlaveState::Idle;
                }
            }
            SPISlaveState::Capture => {
                self.register_in.d.next = (self.register_in.q.val() << 1)
                    | bit_cast::<N, 1>(self.wires.mosi.val().into());
                self.state.d.next = SPISlaveState::Hold;
            }
            SPISlaveState::Hold => {
                if self.advance_detector.edge_signal.val() {
                    if self.pointer.q.val().any() {
                        self.state.d.next = SPISlaveState::Update;
                    } else {
                        if self.continued_saved.q.val() {
                            self.done_flop.d.next = true;
                            self.state.d.next = SPISlaveState::Idle;
                        } else {
                            self.state.d.next = SPISlaveState::Hangup;
                        }
                    }
                    self.escape.d.next = 0.into();
                } else if self.csel_synchronizer.sig_out.val() == self.cs_off.val() {
                    self.done_flop.d.next = true;
                    self.state.d.next = SPISlaveState::Idle;
                } else {
                    self.escape.d.next = self.escape.q.val() + 1;
                }
                if self.escape.q.val() == self.clocks_per_baud.val() {
                    self.done_flop.d.next = true;
                    self.state.d.next = SPISlaveState::Idle;
                }
            }
            SPISlaveState::Update => {
                if self.pointer.q.val().any() {
                    self.pointer.d.next = self.pointer.q.val() - 1;
                }
                self.state.d.next = SPISlaveState::Settle;
            }
            SPISlaveState::Hangup => {
                if self.csel_synchronizer.sig_out.val() == self.cs_off.val() {
                    self.done_flop.d.next = true;
                    self.state.d.next = SPISlaveState::Idle;
                }
                if self.disabled.val() {
                    self.state.d.next = SPISlaveState::Disabled;
                }
            }
            SPISlaveState::Disabled => {
                if !self.disabled.val() {
                    self.state.d.next = SPISlaveState::Idle;
                    self.register_out.d.next = 0.into();
                }
            }
            _ => {
                self.state.d.next = SPISlaveState::Boot;
            }
        }
    }
}

#[test]
fn test_spi_slave_synthesizes() {
    let config = SPIConfig {
        clock_speed: 48_000_000,
        cs_off: true,
        mosi_off: false,
        speed_hz: 1_000_000,
        cpha: true,
        cpol: false,
    };
    let mut uut: SPISlave<64> = SPISlave::new(config);
    uut.connect_all();
    yosys_validate("spi_slave", &generate_verilog(&uut)).unwrap();
}