1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
use crate::{dff::DFF, dff_setup, fifo::async_fifo::AsynchronousFIFO, sdram::SDRAMDriver};
use rust_hdl_core::prelude::*;

use super::{burst_controller::SDRAMBurstController, timings::MemoryTimings, OutputBuffer};

#[derive(Copy, Clone, Debug, PartialEq, LogicState)]
enum State {
    Idle,
    Read,
    Write,
    Busy,
}

#[derive(LogicBlock)]
pub struct SDRAMFIFOController<
    const R: usize, // Number of rows in the SDRAM
    const C: usize, // Number of columns in the SDRAM
    const L: u32,   // Line size (multiple of the SDRAM interface width) - rem(2^C, L) = 0
    const D: usize, // Number of bits in the SDRAM interface width
    const A: usize, // Number of address bits in the SDRAM (should be C + R + B)
> {
    pub clock: Signal<In, Clock>,
    pub sdram: SDRAMDriver<D>,
    pub ram_clock: Signal<In, Clock>,
    // FIFO interface
    pub data_in: Signal<In, Bits<D>>,
    pub write: Signal<In, Bit>,
    pub full: Signal<Out, Bit>,
    pub data_out: Signal<Out, Bits<D>>,
    pub read: Signal<In, Bit>,
    pub empty: Signal<Out, Bit>,
    pub overflow: Signal<Out, Bit>,
    pub underflow: Signal<Out, Bit>,
    pub status: Signal<Out, Bits<8>>,
    controller: SDRAMBurstController<R, C, L, D>,
    fp: AsynchronousFIFO<Bits<D>, 5, 6, L>,
    bp: AsynchronousFIFO<Bits<D>, 5, 6, L>,
    can_write: DFF<Bit>,
    can_read: DFF<Bit>,
    read_pointer: DFF<Bits<A>>,
    write_pointer: DFF<Bits<A>>,
    dram_is_empty: DFF<Bit>,
    dram_is_full: DFF<Bit>,
    state: DFF<State>,
    line_to_word_ratio: Constant<Bits<A>>,
    fill: DFF<Bits<A>>,
    fill_0: Constant<Bits<A>>,
    fill_1: Constant<Bits<A>>,
    fill_2: Constant<Bits<A>>,
    fill_3: Constant<Bits<A>>,
}

impl<const R: usize, const C: usize, const L: u32, const D: usize, const A: usize>
    SDRAMFIFOController<R, C, L, D, A>
{
    pub fn new(cas_delay: u32, timings: MemoryTimings, buffer: OutputBuffer) -> Self {
        assert_eq!((1 << C) % L, 0);
        assert_eq!(A, C + R + 2);
        assert!(L < 32);
        let banks = 4; // Assume 4 banks
                       // Number of total bits
        let bit_count = R * C * D * banks;
        // The number of bits in each entry
        let entry_bits = L as usize * D;
        let max_entries = bit_count / entry_bits;
        // So the number of elements we want to mark with each LED is N/5
        let entries_per_led = max_entries / 5;
        Self {
            clock: Default::default(),
            sdram: Default::default(),
            ram_clock: Default::default(),
            data_in: Default::default(),
            write: Default::default(),
            full: Default::default(),
            data_out: Default::default(),
            read: Default::default(),
            empty: Default::default(),
            overflow: Default::default(),
            underflow: Default::default(),
            status: Default::default(),
            controller: SDRAMBurstController::new(cas_delay, timings, buffer),
            fp: Default::default(),
            bp: Default::default(),
            can_write: Default::default(),
            can_read: Default::default(),
            read_pointer: Default::default(),
            write_pointer: Default::default(),
            dram_is_empty: Default::default(),
            dram_is_full: Default::default(),
            state: Default::default(),
            line_to_word_ratio: Constant::new(L.to_bits()),
            fill: Default::default(),
            fill_0: Constant::new((entries_per_led).to_bits()),
            fill_1: Constant::new((entries_per_led * 2).to_bits()),
            fill_2: Constant::new((entries_per_led * 3).to_bits()),
            fill_3: Constant::new((entries_per_led * 4).to_bits()),
        }
    }
}

impl<const R: usize, const C: usize, const L: u32, const D: usize, const A: usize> Logic
    for SDRAMFIFOController<R, C, L, D, A>
{
    #[hdl_gen]
    fn update(&mut self) {
        clock!(self, ram_clock, controller);
        SDRAMDriver::<D>::link(&mut self.sdram, &mut self.controller.sdram);
        dff_setup!(
            self,
            ram_clock,
            read_pointer,
            write_pointer,
            dram_is_empty,
            dram_is_full,
            can_read,
            can_write,
            state,
            fill
        );
        // The FP write clock is external, but the read clock is the DRAM clock
        self.fp.write_clock.next = self.clock.val();
        self.fp.read_clock.next = self.ram_clock.val();
        // The BP write clock is DRAM, the read clock is external
        self.bp.write_clock.next = self.ram_clock.val();
        self.bp.read_clock.next = self.clock.val();
        // Connect the write interface to the FP fifo
        self.fp.data_in.next = self.data_in.val();
        self.fp.write.next = self.write.val();
        self.full.next = self.fp.full.val();
        self.overflow.next = self.fp.overflow.val();
        // Connect the read interface to the BP fifo
        self.data_out.next = self.bp.data_out.val();
        self.bp.read.next = self.read.val();
        self.empty.next = self.bp.empty.val();
        self.underflow.next = self.bp.underflow.val();
        // The almost empty/full signals in the async fifos are in the
        // DRAM clock domain, so we need to synchronize them back
        // Connect the read interface of the FP fifo to the DRAM controller
        self.controller.data_in.next = self.fp.data_out.val();
        self.fp.read.next = self.controller.data_strobe.val();
        // Connect the write interface of the DRAM controller to the BP fifo
        self.bp.data_in.next = self.controller.data_out.val();
        self.bp.write.next = self.controller.data_valid.val();
        // That takes care of the outside facing part of the fifo...
        //  Now the internals.
        self.dram_is_empty.d.next = self.read_pointer.q.val() == self.write_pointer.q.val();
        self.dram_is_full.d.next = (self.write_pointer.q.val() + self.line_to_word_ratio.val())
            == self.read_pointer.q.val();
        self.can_write.d.next = !self.dram_is_full.q.val() & !self.fp.almost_empty.val();
        self.can_read.d.next = !self.dram_is_empty.q.val() & !self.bp.almost_full.val();
        self.controller.cmd_address.next = 0.into();
        self.controller.write_not_read.next = false;
        self.controller.cmd_strobe.next = false;
        self.fill.clock.next = self.ram_clock.val();
        self.fill.d.next = self.fill.q.val();
        match self.state.q.val() {
            State::Idle => {
                if !self.controller.busy.val() {
                    if self.can_read.q.val() {
                        self.state.d.next = State::Read;
                        self.controller.cmd_address.next =
                            bit_cast::<32, A>(self.read_pointer.q.val());
                        self.controller.write_not_read.next = false;
                        self.controller.cmd_strobe.next = true;
                    } else if self.can_write.q.val() {
                        self.state.d.next = State::Write;
                        self.controller.cmd_address.next =
                            bit_cast::<32, A>(self.write_pointer.q.val());
                        self.controller.write_not_read.next = true;
                        self.controller.cmd_strobe.next = true;
                    }
                }
            }
            State::Read => {
                self.read_pointer.d.next =
                    self.read_pointer.q.val() + self.line_to_word_ratio.val();
                self.fill.d.next = self.fill.q.val() - 1;
                self.state.d.next = State::Busy;
            }
            State::Write => {
                self.write_pointer.d.next =
                    self.write_pointer.q.val() + self.line_to_word_ratio.val();
                self.fill.d.next = self.fill.q.val() + 1;
                self.state.d.next = State::Busy;
            }
            State::Busy => {
                if !self.controller.busy.val() {
                    self.state.d.next = State::Idle;
                }
            }
            _ => {
                self.state.d.next = State::Idle;
            }
        }
        self.status.next = 0.into();
        if self.fill.q.val() > self.fill_0.val() {
            self.status.next = self.status.val() | 1;
        }
        if self.fill.q.val() > self.fill_1.val() {
            self.status.next = self.status.val() | 2;
        }
        if self.fill.q.val() > self.fill_2.val() {
            self.status.next = self.status.val() | 4;
        }
        if self.fill.q.val() > self.fill_3.val() {
            self.status.next = self.status.val() | 8;
        }
        if self.underflow.val() | self.overflow.val() {
            self.status.next = self.status.val() | 16;
        }
        if self.dram_is_empty.q.val() {
            self.status.next = self.status.val() | 32;
        }
        if self.fp.empty.val() {
            self.status.next = self.status.val() | 64;
        }
        if self.bp.full.val() {
            self.status.next = self.status.val() | 128;
        }
    }
}