1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
use crate::dff::DFF;
use crate::dff_setup;
use crate::prelude::DelayLine;
use crate::sdram::cmd::{SDRAMCommand, SDRAMCommandEncoder};
use crate::sdram::{OutputBuffer, SDRAMDriver};
use rust_hdl_core::prelude::*;

use super::timings::MemoryTimings;

// Controller states...
#[derive(Copy, Clone, PartialEq, Debug, LogicState)]
enum State {
    Boot,
    Precharge1,
    AutoRefresh1,
    AutoRefresh2,
    LoadModeRegister,
    Idle,
    IssueRead,
    IssueWrite,
    Refresh,
    ReadActivate,
    ReadCycle,
    WriteActivate,
    WritePrep,
    WriteCycle,
    Recovery,
    Precharge,
    Error,
}

// Limits - can only run a 4 bank SDRAM.  If you need a different
// number of banks, you will need to modify it.
//
// Constants:
//  R - Row bits in the address
//  C - Col bits in the address
//  D - Data bus width
//  L - Burst size (< 32)
#[derive(LogicBlock)]
pub struct SDRAMBurstController<const R: usize, const C: usize, const L: u32, const D: usize> {
    pub clock: Signal<In, Clock>,
    pub sdram: SDRAMDriver<D>,
    // The input interface does not allow flow control.  You must hook this up to a
    // FIFO on the consumer side to send data or risk data loss.  It is your
    // responsibility to ensure that you can provide L values on the input interface
    // on demand when you issue the WRITE command.
    pub data_in: Signal<In, Bits<D>>,
    pub data_strobe: Signal<Out, Bit>,
    // The output interface does not allow flow control.  You must hook this up to a
    // FIFO on the consumer side to receive data or risk data loss.  It is your
    // responsibility to ensure that you can accept L values on the output interface
    // when you issue the READ command.
    pub data_out: Signal<Out, Bits<D>>,
    pub data_valid: Signal<Out, Bit>,
    // Command interface
    pub write_not_read: Signal<In, Bit>,
    pub cmd_strobe: Signal<In, Bit>,
    pub cmd_address: Signal<In, Bits<32>>,
    pub busy: Signal<Out, Bit>,
    pub error: Signal<Out, Bit>,
    cmd: Signal<Local, SDRAMCommand>,
    encode: SDRAMCommandEncoder,
    boot_delay: Constant<Bits<16>>,
    t_rp: Constant<Bits<16>>,
    t_rfc: Constant<Bits<16>>,
    t_refresh_max: Constant<Bits<16>>,
    t_rcd: Constant<Bits<16>>,
    t_wr: Constant<Bits<16>>,
    max_transfer_size: Constant<Bits<6>>,
    mode_register: Constant<Bits<13>>,
    cas_delay: Constant<Bits<3>>,
    state: DFF<State>,
    reg_address: DFF<Bits<32>>,
    reg_cmd_address: DFF<Bits<32>>,
    delay_counter: DFF<Bits<16>>,
    refresh_counter: DFF<Bits<16>>,
    transfer_counter: DFF<Bits<6>>,
    read_valid: DelayLine<Bit, 8, 3>,
    addr_bank: Signal<Local, Bits<2>>,
    addr_row: Signal<Local, Bits<13>>,
    addr_col: Signal<Local, Bits<13>>,
    write_pending: DFF<Bit>,
    read_pending: DFF<Bit>,
    refresh_needed: DFF<Bit>,
    row_bits: Constant<Bits<32>>,
    col_bits: Constant<Bits<32>>,
    // These are used to decouple the timing of the controller from the
    // outside world
    data_in_reg: DFF<Bits<D>>,
    data_strobe_reg: DFF<Bit>,
    data_out_reg: DFF<Bits<D>>,
}

impl<const R: usize, const C: usize, const L: u32, const D: usize>
    SDRAMBurstController<R, C, L, D>
{
    pub fn new(
        cas_delay: u32,
        timings: MemoryTimings,
        buffer: OutputBuffer,
    ) -> SDRAMBurstController<R, C, L, D> {
        assert!(L < 64);
        assert_eq!((1 << C) % L, 0);
        // mode register definitions
        // A2:A0 are the burst length, this design does not use burst transfers
        // so A2:A0 are 0
        // A3 is 0 because of burst type sequential
        // A6:A4 define the CAS latency in clocks.  We assume 3 clocks of latency.
        // The rest of the bits should all be zero
        // So the mode register is basically just CAS << 4
        let mode_register = cas_delay << 4;
        Self {
            clock: Default::default(),
            sdram: Default::default(),
            cmd: Default::default(),
            data_in: Default::default(),
            data_strobe: Default::default(),
            write_not_read: Default::default(),
            cmd_strobe: Default::default(),
            cmd_address: Default::default(),
            busy: Default::default(),
            data_out: Default::default(),
            data_valid: Default::default(),
            error: Default::default(),
            boot_delay: Constant::new((timings.t_boot() + 50).to_bits()),
            t_rp: Constant::new((timings.t_rp()).to_bits()),
            t_rfc: Constant::new((timings.t_rfc()).to_bits()),
            t_refresh_max: Constant::new((timings.t_refresh_max() * 7 / 10).to_bits()),
            t_rcd: Constant::new((timings.t_rcd()).to_bits()),
            t_wr: Constant::new((timings.t_wr()).to_bits()),
            max_transfer_size: Constant::new(L.to_bits()),
            mode_register: Constant::new(mode_register.to_bits()),
            /*
             * For a registered buffer, we need to add 2 cycles to the cas delay
             * - we add 1 on the send side because we add 1 on the send side and
             *   1 on the receive side
             */
            cas_delay: Constant::new(
                match buffer {
                    OutputBuffer::Wired => cas_delay + 1,
                    OutputBuffer::DelayOne => cas_delay + 2,
                    OutputBuffer::DelayTwo => cas_delay + 3,
                }
                .to_bits(),
            ),
            state: Default::default(),
            reg_address: Default::default(),
            reg_cmd_address: Default::default(),
            delay_counter: Default::default(),
            refresh_counter: Default::default(),
            transfer_counter: Default::default(),
            read_valid: Default::default(),
            addr_bank: Default::default(),
            addr_row: Default::default(),
            addr_col: Default::default(),
            write_pending: Default::default(),
            row_bits: Constant::new(R.to_bits()),
            col_bits: Constant::new(C.to_bits()),
            data_in_reg: Default::default(),
            read_pending: Default::default(),
            encode: Default::default(),
            refresh_needed: Default::default(),
            data_out_reg: Default::default(),
            data_strobe_reg: Default::default(),
        }
    }
}

impl<const R: usize, const C: usize, const L: u32, const D: usize> Logic
    for SDRAMBurstController<R, C, L, D>
{
    #[hdl_gen]
    fn update(&mut self) {
        // Clock the internal logic
        dff_setup!(
            self,
            clock,
            state,
            reg_address,
            reg_cmd_address,
            delay_counter,
            refresh_counter,
            transfer_counter,
            write_pending,
            read_pending,
            refresh_needed,
            data_in_reg,
            data_strobe_reg,
            data_out_reg
        );
        clock!(self, clock, read_valid);
        // Latch prevention
        self.delay_counter.d.next = self.delay_counter.q.val() + 1;
        self.refresh_counter.d.next = self.refresh_counter.q.val() + 1;
        self.cmd.next = SDRAMCommand::NOP;
        self.sdram.address.next = 0.into();
        self.sdram.bank.next = 0.into();
        // Insert registers to decouple the DRAM bus from the external bus
        self.data_out.next = self.data_out_reg.q.val();
        self.data_out_reg.d.next = self.sdram.read_data.val();
        self.data_valid.next = self.read_valid.data_out.val();
        self.sdram.write_enable.next = false;
        // Connect the DRAM to the staging register to decouple timing
        self.sdram.write_data.next = self.data_in_reg.q.val();
        self.data_strobe.next = self.data_strobe_reg.q.val();
        self.read_valid.data_in.next = false;
        self.read_valid.delay.next = self.cas_delay.val();
        // Calculate the read and write addresses
        self.addr_col.next = bit_cast::<13, C>(self.reg_address.q.val().get_bits::<C>(0));
        self.addr_row.next = bit_cast::<13, R>(
            self.reg_address
                .q
                .val()
                .get_bits::<R>(self.col_bits.val().index()),
        );
        self.addr_bank.next = self
            .reg_address
            .q
            .val()
            .get_bits::<2>(self.col_bits.val().index() + self.row_bits.val().index());
        self.transfer_counter.d.next = self.transfer_counter.q.val();
        // State machine
        self.busy.next = (self.state.q.val() != State::Idle)
            | self.write_pending.q.val()
            | self.read_pending.q.val();
        self.data_strobe_reg.d.next = false;
        match self.state.q.val() {
            State::Boot => {
                if self.delay_counter.q.val() == self.boot_delay.val() {
                    self.state.d.next = State::Precharge1;
                    self.cmd.next = SDRAMCommand::Precharge;
                    self.sdram.address.next = 0xFFF.into();
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::Precharge1 => {
                if self.delay_counter.q.val() == self.t_rp.val() {
                    self.state.d.next = State::AutoRefresh1;
                    self.cmd.next = SDRAMCommand::AutoRefresh;
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::AutoRefresh1 => {
                if self.delay_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = State::AutoRefresh2;
                    self.cmd.next = SDRAMCommand::AutoRefresh;
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::AutoRefresh2 => {
                if self.delay_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = State::LoadModeRegister;
                    self.cmd.next = SDRAMCommand::LoadModeRegister;
                    self.sdram.address.next = self.mode_register.val();
                    self.delay_counter.d.next = 0.into();
                }
            }
            State::LoadModeRegister => {
                if self.delay_counter.q.val() == 4 {
                    self.state.d.next = State::Idle;
                }
            }
            State::Idle => {
                self.delay_counter.d.next = 0.into();
                self.transfer_counter.d.next = 0.into();
                if self.refresh_needed.q.val() {
                    // Refresh takes the highest priority
                    self.cmd.next = SDRAMCommand::AutoRefresh;
                    self.state.d.next = State::Refresh;
                    self.refresh_counter.d.next = 0.into();
                    self.refresh_needed.d.next = false;
                } else if self.read_pending.q.val() {
                    self.reg_address.d.next = self.reg_cmd_address.q.val();
                    self.state.d.next = State::IssueRead;
                } else if self.write_pending.q.val() {
                    self.reg_address.d.next = self.reg_cmd_address.q.val();
                    self.state.d.next = State::IssueWrite;
                }
            }
            State::IssueRead => {
                self.cmd.next = SDRAMCommand::Active;
                self.sdram.bank.next = self.addr_bank.val();
                self.sdram.address.next = self.addr_row.val();
                self.state.d.next = State::ReadActivate;
                self.read_pending.d.next = false;
            }
            State::IssueWrite => {
                self.cmd.next = SDRAMCommand::Active;
                self.sdram.bank.next = self.addr_bank.val();
                self.sdram.address.next = self.addr_row.val();
                self.state.d.next = State::WriteActivate;
                self.write_pending.d.next = false;
                self.sdram.write_enable.next = true;
            }
            State::Refresh => {
                if self.delay_counter.q.val() == self.t_rfc.val() {
                    self.state.d.next = State::Idle;
                }
            }
            State::ReadActivate => {
                if self.delay_counter.q.val() == self.t_rcd.val() {
                    self.state.d.next = State::ReadCycle;
                    self.transfer_counter.d.next = 0.into();
                }
            }
            State::WriteActivate => {
                self.sdram.write_enable.next = true;
                if self.delay_counter.q.val() == self.t_rcd.val() {
                    self.state.d.next = State::WritePrep;
                    self.transfer_counter.d.next = 0.into();
                    self.data_strobe_reg.d.next = true;
                }
            }
            State::WritePrep => {
                self.state.d.next = State::WriteCycle;
                self.data_strobe_reg.d.next = true;
                self.sdram.write_enable.next = true;
            }
            State::WriteCycle => {
                self.sdram.write_enable.next = true;
                if self.transfer_counter.q.val() < self.max_transfer_size.val() {
                    self.sdram.bank.next = self.addr_bank.val();
                    self.sdram.address.next = self.addr_col.val();
                    self.cmd.next = SDRAMCommand::Write;
                    self.transfer_counter.d.next = self.transfer_counter.q.val() + 1;
                    self.reg_address.d.next = self.reg_address.q.val() + 1;
                } else {
                    self.delay_counter.d.next = 0.into();
                    self.state.d.next = State::Recovery;
                }
                if self.transfer_counter.q.val() < self.max_transfer_size.val() - 2 {
                    self.data_strobe_reg.d.next = true;
                }
            }
            State::Recovery => {
                self.sdram.write_enable.next = true;
                if self.delay_counter.q.val() == self.t_wr.val() {
                    self.cmd.next = SDRAMCommand::Precharge;
                    // 13 bits is 0001_1111_1111_1111 0x1FFF or
                    self.sdram.address.next = 0x1FFF.into();
                    self.delay_counter.d.next = 0.into();
                    self.state.d.next = State::Precharge;
                }
            }
            State::Precharge => {
                if self.delay_counter.q.val() == self.t_rp.val() {
                    self.state.d.next = State::Idle;
                }
            }
            State::ReadCycle => {
                if self.transfer_counter.q.val() < self.max_transfer_size.val() {
                    self.sdram.bank.next = self.addr_bank.val();
                    self.sdram.address.next = self.addr_col.val();
                    self.cmd.next = SDRAMCommand::Read;
                    self.transfer_counter.d.next = self.transfer_counter.q.val() + 1;
                    self.read_valid.data_in.next = true;
                    self.reg_address.d.next = self.reg_address.q.val() + 1;
                } else {
                    self.delay_counter.d.next = 0.into();
                    self.state.d.next = State::Recovery;
                }
            }
            State::Error => {}
            _ => {
                self.state.d.next = State::Boot;
            }
        }
        self.error.next = self.state.q.val() == State::Error;
        // Handle the input command latching
        if self.cmd_strobe.val() & !self.read_pending.q.val() & !self.write_pending.q.val() {
            self.reg_cmd_address.d.next = self.cmd_address.val();
            if self.write_not_read.val() {
                self.write_pending.d.next = true;
            } else {
                self.read_pending.d.next = true;
            }
        }
        if self.refresh_counter.q.val() >= self.t_refresh_max.val() {
            self.refresh_needed.d.next = true;
        }
        // Connect up the command encoder
        self.sdram.cs_not.next = self.encode.cs_not.val();
        self.sdram.cas_not.next = self.encode.cas_not.val();
        self.sdram.ras_not.next = self.encode.ras_not.val();
        self.sdram.we_not.next = self.encode.we_not.val();
        self.encode.cmd.next = self.cmd.val();
        self.sdram.clk.next = self.clock.val();
        self.data_in_reg.d.next = self.data_in.val();
    }
}