1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
use rust_hdl_core::prelude::*;

use crate::{dff::DFF, dff_setup};

// The read side of the circuitry for the FIFO.  Manages the read
// address
#[derive(LogicBlock)]
pub struct FIFOReadLogic<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> {
    // Clock
    pub clock: Signal<In, Clock>,
    // FIFO facing interface
    pub read: Signal<In, Bit>,
    pub data_out: Signal<Out, D>,
    pub empty: Signal<Out, Bit>,
    pub almost_empty: Signal<Out, Bit>,
    pub underflow: Signal<Out, Bit>,
    // Delayed write address
    pub write_address_delayed: Signal<In, Bits<NP1>>,
    // RAM read interface (connect to RAM)
    pub ram_read_address: Signal<Out, Bits<N>>,
    pub ram_read_data: Signal<In, D>,
    pub ram_read_clock: Signal<Out, Clock>,
    // Read address
    pub read_address_out: Signal<Out, Bits<NP1>>,
    pub fill_level: Signal<Out, Bits<NP1>>,
    // Internal details
    read_address: DFF<Bits<NP1>>,
    is_empty: Signal<Local, Bit>,
    is_full: Signal<Local, Bit>,
    dff_underflow: DFF<Bit>,
    fifo_address_mask: Constant<Bits<NP1>>,
    fifo_size: Constant<Bits<NP1>>,
    block_size: Constant<Bits<NP1>>,
}

impl<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> Logic
    for FIFOReadLogic<D, N, NP1, BLOCK_SIZE>
{
    #[hdl_gen]
    fn update(&mut self) {
        dff_setup!(self, clock, read_address, dff_underflow);
        // Connect the clocks.
        self.ram_read_clock.next = self.clock.val();
        // Compute the is empty flag
        self.is_empty.next = (self.read_address.q.val() == self.write_address_delayed.val()).into();
        self.is_full.next = !self.is_empty.val()
            & ((self.read_address.q.val() & self.fifo_address_mask.val())
                == (self.write_address_delayed.val() & self.fifo_address_mask.val()));
        // Estimate the fill level
        self.fill_level.next = ((self.write_address_delayed.val() & self.fifo_address_mask.val())
            + self.fifo_size.val()
            - (self.read_address.q.val() & self.fifo_address_mask.val()))
            & self.fifo_address_mask.val();
        if self.is_full.val() {
            self.fill_level.next = self.fifo_size.val();
        }
        // Compute the almost empty signal
        self.almost_empty.next = (self.fill_level.val() < self.block_size.val()).into();
        // Propagate the empty signal.
        self.empty.next = self.is_empty.val();
        // Set the RAM read address by masking off the lower N bits of the pointer.
        self.ram_read_address.next =
            bit_cast::<N, NP1>(self.read_address.q.val() & self.fifo_address_mask.val());
        // Forward the output of the RAM read to the FIFO interface.
        self.data_out.next = self.ram_read_data.val();
        // Assign the read advance based on the outside request
        // and our availability to read.
        if self.read.val() & !self.is_empty.val() {
            self.read_address.d.next = self.read_address.q.val() + 1;
            // We "forward" by a cycle so that we don't loose a cycle waiting for the
            // update to propagate through the flip flop.
            self.ram_read_address.next =
                bit_cast::<N, NP1>((self.read_address.q.val() + 1) & self.fifo_address_mask.val());
        } else {
            self.read_address.d.next = self.read_address.q.val();
        }
        self.dff_underflow.d.next =
            self.dff_underflow.q.val() | (self.is_empty.val() & self.read.val());
        self.underflow.next = self.dff_underflow.q.val();
        self.read_address_out.next = self.read_address.q.val();
    }
}

impl<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> Default
    for FIFOReadLogic<D, N, NP1, BLOCK_SIZE>
{
    fn default() -> Self {
        Self {
            clock: Default::default(),
            read: Default::default(),
            data_out: Default::default(),
            empty: Default::default(),
            almost_empty: Default::default(),
            underflow: Default::default(),
            write_address_delayed: Default::default(),
            ram_read_address: Default::default(),
            ram_read_data: Default::default(),
            ram_read_clock: Default::default(),
            read_address_out: Default::default(),
            read_address: Default::default(),
            is_empty: Default::default(),
            is_full: Default::default(),
            fill_level: Default::default(),
            dff_underflow: Default::default(),
            fifo_address_mask: Constant::new(((1_u32 << (N)) - 1).to_bits()),
            fifo_size: Constant::new(Bits::<N>::count().to_bits()),
            block_size: Constant::new(BLOCK_SIZE.to_bits()),
        }
    }
}

#[test]
fn fifo_read_is_synthesizable() {
    let mut dev: FIFOReadLogic<Bits<8>, 8, 9, 4> = Default::default();
    dev.connect_all();
    yosys_validate("fifo_read", &generate_verilog(&dev)).unwrap();
}

#[derive(LogicBlock)]
pub struct FIFOWriteLogic<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> {
    pub write: Signal<In, Bit>,
    pub data_in: Signal<In, D>,
    pub full: Signal<Out, Bit>,
    pub almost_full: Signal<Out, Bit>,
    pub overflow: Signal<Out, Bit>,
    pub clock: Signal<In, Clock>,
    pub ram_write_address: Signal<Out, Bits<N>>,
    pub ram_write_clock: Signal<Out, Clock>,
    pub ram_write_data: Signal<Out, D>,
    pub ram_write_enable: Signal<Out, Bit>,
    pub read_address: Signal<In, Bits<NP1>>,
    pub write_address_delayed: Signal<Out, Bits<NP1>>,
    write_address: DFF<Bits<NP1>>,
    dff_write_address_delay: DFF<Bits<NP1>>,
    is_empty: Signal<Local, Bit>,
    is_full: Signal<Local, Bit>,
    pub fill_level: Signal<Out, Bits<NP1>>,
    dff_overflow: DFF<Bit>,
    fifo_address_mask: Constant<Bits<NP1>>,
    fifo_size: Constant<Bits<NP1>>,
    almost_full_level: Constant<Bits<NP1>>,
}

impl<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> Default
    for FIFOWriteLogic<D, N, NP1, BLOCK_SIZE>
{
    fn default() -> Self {
        assert_eq!(N + 1, NP1);
        assert!(NP1 < 32);
        Self {
            write: Default::default(),
            data_in: Default::default(),
            full: Default::default(),
            almost_full: Default::default(),
            overflow: Default::default(),
            clock: Default::default(),
            ram_write_address: Default::default(),
            ram_write_clock: Default::default(),
            ram_write_data: Default::default(),
            ram_write_enable: Default::default(),
            read_address: Default::default(),
            write_address: Default::default(),
            write_address_delayed: Default::default(),
            dff_write_address_delay: Default::default(),
            is_empty: Default::default(),
            is_full: Default::default(),
            fill_level: Default::default(),
            dff_overflow: Default::default(),
            fifo_address_mask: Constant::new(((1_u32 << (N)) - 1).to_bits()),
            fifo_size: Constant::new(Bits::<N>::count().to_bits()),
            almost_full_level: Constant::new((Bits::<N>::count() - (BLOCK_SIZE as u128)).to_bits()),
        }
    }
}

impl<D: Synth, const N: usize, const NP1: usize, const BLOCK_SIZE: u32> Logic
    for FIFOWriteLogic<D, N, NP1, BLOCK_SIZE>
{
    #[hdl_gen]
    fn update(&mut self) {
        dff_setup!(
            self,
            clock,
            dff_overflow,
            write_address,
            dff_write_address_delay
        );
        self.ram_write_clock.next = self.clock.val();
        // We need a 1 cycle delay on the write address
        // This ensures we do not try to read a data element on the same
        // cycle it is written.
        self.dff_write_address_delay.d.next = self.write_address.q.val();
        self.write_address_delayed.next = self.dff_write_address_delay.q.val();
        // Default to not writing
        self.ram_write_enable.next = false.into();
        // Calculate the empty field - this is used to determine if we
        // can read
        self.is_empty.next =
            (self.read_address.val() == self.dff_write_address_delay.q.val()).into();
        // Calculate the is full field.  If the FIFO is not empty, and
        // the lower N bits of the addresses agree, the FIFO is full
        self.is_full.next = !self.is_empty.val()
            & ((self.read_address.val() & self.fifo_address_mask.val())
                == (self.write_address.q.val() & self.fifo_address_mask.val()));
        // Compute the fill level - we add N first, since we are subtracting.  And
        // we mask out the lower N bits, since we are ignoring the wrap levels.
        // Note that if the FIFO is empty, this calculation will give the wrong
        // answer, so we need to check the is_empty flag (which uses all N+1 bits).
        self.fill_level.next = ((self.dff_write_address_delay.q.val()
            & self.fifo_address_mask.val())
            + self.fifo_size.val()
            - (self.read_address.val() & self.fifo_address_mask.val()))
            & self.fifo_address_mask.val();
        if self.is_full.val() {
            self.fill_level.next = self.fifo_size.val();
        }
        self.almost_full.next = (self.fill_level.val() >= self.almost_full_level.val()).into();
        self.full.next = self.is_full.val();
        // Connect our write address register to the RAM write address
        self.ram_write_address.next =
            bit_cast::<N, NP1>(self.write_address.q.val() & self.fifo_address_mask.val());
        self.ram_write_data.next = self.data_in.val();
        // Assign the enable for the write based on the outside
        // request and our availability to write
        if self.write.val() & !self.is_full.val() {
            self.write_address.d.next = self.write_address.q.val() + 1;
            self.ram_write_enable.next = true;
        } else {
            self.write_address.d.next = self.write_address.q.val();
            self.ram_write_enable.next = false;
        }
        // Compute the overflow signal - it is latched
        self.dff_overflow.d.next =
            self.dff_overflow.q.val() | (self.is_full.val() & self.write.val());
        self.overflow.next = self.dff_overflow.q.val();
    }
}

#[test]
fn fifo_write_is_synthesizable() {
    let mut dev: FIFOWriteLogic<Bits<8>, 8, 9, 4> = Default::default();
    dev.connect_all();
    yosys_validate("fifo_write", &generate_verilog(&dev)).unwrap();
}