1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use crate::atom::Atom;
use crate::block::Block;
use crate::probe::Probe;
use crate::synth::VCDValue;
use std::collections::HashMap;
use std::io::Write;
pub struct VCDProbe<W: Write> {
vcd: vcd::Writer<W>,
id_map: HashMap<usize, vcd::IdCode>,
val_map: HashMap<vcd::IdCode, VCDValue>,
}
impl<W: Write> VCDProbe<W> {
pub fn new(w: W) -> VCDProbe<W> {
Self {
vcd: vcd::Writer::new(w),
id_map: HashMap::default(),
val_map: HashMap::default(),
}
}
pub fn timestamp(&mut self, ts: u64) -> std::io::Result<()> {
self.vcd.timestamp(ts)
}
}
struct VCDHeader<W: Write>(VCDProbe<W>);
impl<W: Write> Probe for VCDHeader<W> {
fn visit_start_scope(&mut self, name: &str, _node: &dyn Block) {
self.0.vcd.add_module(name).unwrap();
}
fn visit_start_namespace(&mut self, name: &str, _node: &dyn Block) {
self.0.vcd.add_module(name).unwrap();
}
fn visit_atom(&mut self, name: &str, signal: &dyn Atom) {
let width = if signal.is_enum() {
0
} else {
signal.bits() as u32
};
let id = self.0.vcd.add_wire(width, name).unwrap();
self.0.id_map.insert(signal.id(), id);
}
fn visit_end_namespace(&mut self, _name: &str, _node: &dyn Block) {
self.0.vcd.upscope().unwrap();
}
fn visit_end_scope(&mut self, _name: &str, _node: &dyn Block) {
self.0.vcd.upscope().unwrap();
}
}
pub fn write_vcd_header<W: Write>(writer: W, uut: &dyn Block) -> VCDProbe<W> {
let mut visitor = VCDHeader(VCDProbe::new(writer));
visitor.0.vcd.timescale(1, vcd::TimescaleUnit::PS).unwrap();
uut.accept("uut", &mut visitor);
visitor.0.vcd.enddefinitions().unwrap();
visitor.0
}
struct VCDChange<W: Write>(VCDProbe<W>);
impl<W: Write> Probe for VCDChange<W> {
fn visit_atom(&mut self, _name: &str, signal: &dyn Atom) {
if let Some(idc) = self.0.id_map.get(&signal.id()) {
let val = signal.vcd();
if let Some(old_val) = self.0.val_map.get(idc) {
if val == *old_val {
return;
}
}
self.0.val_map.insert(*idc, val.clone());
match val {
VCDValue::Single(s) => {
self.0.vcd.change_scalar(*idc, s).unwrap();
}
VCDValue::Vector(v) => {
self.0.vcd.change_vector(*idc, &v).unwrap();
}
VCDValue::String(t) => {
self.0.vcd.change_string(*idc, &t).unwrap();
}
}
}
}
}
pub fn write_vcd_change<W: Write>(vcd: VCDProbe<W>, uut: &dyn Block) -> VCDProbe<W> {
let mut visitor = VCDChange(vcd);
uut.accept("uut", &mut visitor);
visitor.0
}
struct VCDDump<W: Write>(VCDProbe<W>);
impl<W: Write> Probe for VCDDump<W> {
fn visit_atom(&mut self, _name: &str, signal: &dyn Atom) {
if let Some(&idc) = self.0.id_map.get(&signal.id()) {
let val = signal.vcd();
self.0.val_map.insert(idc, val.clone());
match val {
VCDValue::Single(s) => {
self.0.vcd.change_scalar(idc, s).unwrap();
}
VCDValue::Vector(v) => {
self.0.vcd.change_vector(idc, &v).unwrap();
}
VCDValue::String(t) => {
self.0.vcd.change_string(idc, &t).unwrap();
}
}
}
}
}
pub fn write_vcd_dump<W: Write>(vcd: VCDProbe<W>, uut: &dyn Block) -> VCDProbe<W> {
let mut visitor = VCDDump(vcd);
visitor
.0
.vcd
.begin(vcd::SimulationCommand::Dumpvars)
.unwrap();
uut.accept("uut", &mut visitor);
visitor.0.vcd.end().unwrap();
visitor.0
}