1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
//! The CUDA specific implementation of a [`Buffer`], [`Device`], [`Program`] and [`Kernel`].
//!
//! The current operation mode is synchronuous, in order to have higher safety gurarantees. All
//! operations happen on a single stream, which is synchronized after each operation. This is a
//! similar behaviour to CUDA's default stream. The default stream isn't used for two reasons:
//!
//! 1. RustaCUDA doesn't expose a higher level function to launch a kernel on the default stream
//! 2. There was a bug, when the default stream was used implicitly via RustaCUDA's synchronuous
//! copy methods. To prevent such kind of bugs, be explicit which stream is used.
pub(crate) mod utils;
use std::convert::TryFrom;
use std::ffi::{c_void, CStr, CString};
use std::fmt;
use std::hash::{Hash, Hasher};
use rustacuda::memory::{AsyncCopyDestination, DeviceBuffer};
use rustacuda::stream::{Stream, StreamFlags};
use crate::device::{DeviceUuid, PciId, Vendor};
use crate::error::{GPUError, GPUResult};
use crate::LocalBuffer;
/// A Buffer to be used for sending and receiving data to/from the GPU.
#[derive(Debug)]
pub struct Buffer<T> {
buffer: DeviceBuffer<u8>,
/// The number of T-sized elements.
length: usize,
_phantom: std::marker::PhantomData<T>,
}
/// CUDA specific device.
#[allow(dead_code)]
#[derive(Debug, Clone)]
pub struct Device {
vendor: Vendor,
name: String,
/// The total memory of the GPU in bytes.
memory: u64,
/// Number of streaming multiprocessors.
compute_units: u32,
/// The compute capability of the device, major and minor version.
compute_capability: (u32, u32),
pci_id: PciId,
uuid: Option<DeviceUuid>,
device: rustacuda::device::Device,
context: rustacuda::context::UnownedContext,
}
impl Hash for Device {
fn hash<H: Hasher>(&self, state: &mut H) {
self.vendor.hash(state);
self.name.hash(state);
self.memory.hash(state);
self.pci_id.hash(state);
self.uuid.hash(state);
}
}
impl PartialEq for Device {
fn eq(&self, other: &Self) -> bool {
self.vendor == other.vendor
&& self.name == other.name
&& self.memory == other.memory
&& self.pci_id == other.pci_id
&& self.uuid == other.uuid
}
}
impl Eq for Device {}
impl Device {
/// Returns the [`Vendor`] of the GPU.
pub fn vendor(&self) -> Vendor {
self.vendor
}
/// Returns the name of the GPU, e.g. "GeForce RTX 3090".
pub fn name(&self) -> String {
self.name.clone()
}
/// Returns the memory of the GPU in bytes.
pub fn memory(&self) -> u64 {
self.memory
}
/// Returns the number of compute units of the GPU.
pub fn compute_units(&self) -> u32 {
self.compute_units
}
/// Returns the major and minor version of compute capability of the GPU.
pub fn compute_capability(&self) -> (u32, u32) {
self.compute_capability
}
/// Returns the PCI-ID of the GPU, see the [`PciId`] type for more information.
pub fn pci_id(&self) -> PciId {
self.pci_id
}
/// Returns the PCI-ID of the GPU if available, see the [`DeviceUuid`] type for more
/// information.
pub fn uuid(&self) -> Option<DeviceUuid> {
self.uuid
}
}
/// Abstraction that contains everything to run a CUDA kernel on a GPU.
///
/// The majority of methods are the same as [`crate::opencl::Program`], so you can write code using this
/// API, which will then work with OpenCL as well as CUDA kernels.
// When compiled without the `opencl` feature, then the intra-doc link above will be broken.
#[allow(rustdoc::broken_intra_doc_links)]
#[derive(Debug)]
pub struct Program {
context: rustacuda::context::UnownedContext,
module: rustacuda::module::Module,
stream: Stream,
device_name: String,
}
impl Program {
/// Returns the name of the GPU, e.g. "GeForce RTX 3090".
pub fn device_name(&self) -> &str {
&self.device_name
}
/// Creates a program for a specific device from a compiled CUDA binary file.
pub fn from_binary(device: &Device, filename: &CStr) -> GPUResult<Program> {
rustacuda::context::CurrentContext::set_current(&device.context)?;
let module = rustacuda::module::Module::load_from_file(filename).map_err(|err| {
Self::pop_context();
err
})?;
let stream = Stream::new(StreamFlags::NON_BLOCKING, None).map_err(|err| {
Self::pop_context();
err
})?;
let prog = Program {
module,
stream,
device_name: device.name(),
context: device.context.clone(),
};
Self::pop_context();
Ok(prog)
}
/// Creates a program for a specific device from a compiled CUDA binary.
pub fn from_bytes(device: &Device, bytes: &[u8]) -> GPUResult<Program> {
rustacuda::context::CurrentContext::set_current(&device.context)?;
let module = rustacuda::module::Module::load_from_bytes(bytes).map_err(|err| {
Self::pop_context();
err
})?;
let stream = Stream::new(StreamFlags::NON_BLOCKING, None).map_err(|err| {
Self::pop_context();
err
})?;
let prog = Program {
module,
stream,
device_name: device.name(),
context: device.context.clone(),
};
Self::pop_context();
Ok(prog)
}
/// Creates a new buffer that can be used for input/output with the GPU.
///
/// The `length` is the number of elements to create.
///
/// It is usually used to create buffers that are initialized by the GPU. If you want to
/// directly transfer data from the host to the GPU, you would use the safe
/// [`Program::create_buffer_from_slice`] instead.
///
/// ### Safety
///
/// The buffer needs to be initalized (by the host with [`Program::write_from_buffer`]) or by
/// the GPU) before it can be read via [`Program::read_into_buffer`].
pub unsafe fn create_buffer<T>(&self, length: usize) -> GPUResult<Buffer<T>> {
assert!(length > 0);
// This is the unsafe call, the rest of the function is safe code.
let buffer = DeviceBuffer::<u8>::uninitialized(length * std::mem::size_of::<T>())?;
Ok(Buffer::<T> {
buffer,
length,
_phantom: std::marker::PhantomData,
})
}
/// Creates a new buffer on the GPU and initializes with the given slice.
pub fn create_buffer_from_slice<T>(&self, slice: &[T]) -> GPUResult<Buffer<T>> {
// The number of bytes is used for the allocations.
let bytes_len = slice.len() * std::mem::size_of::<T>();
// Transmuting types is safe as long a sizes match.
let bytes = unsafe {
std::slice::from_raw_parts(slice.as_ptr() as *const T as *const u8, bytes_len)
};
// It is only unsafe as long as the buffer isn't initialized, but that's what we do next.
let mut buffer = unsafe { DeviceBuffer::<u8>::uninitialized(bytes_len)? };
// It is safe as we synchronize the stream after the call.
unsafe { buffer.async_copy_from(bytes, &self.stream)? };
self.stream.synchronize()?;
Ok(Buffer::<T> {
buffer,
length: slice.len(),
_phantom: std::marker::PhantomData,
})
}
/// Returns a kernel.
///
/// The `global_work_size` does *not* follow the OpenCL definition. It is *not* the total
/// number of threads. Instead it follows CUDA's definition and is the number of
/// `local_work_size` sized thread groups. So the total number of threads is
/// `global_work_size * local_work_size`.
pub fn create_kernel(&self, name: &str, gws: usize, lws: usize) -> GPUResult<Kernel> {
let function_name = CString::new(name).expect("Kernel name must not contain nul bytes");
let function = self.module.get_function(&function_name)?;
Ok(Kernel {
function,
global_work_size: gws,
local_work_size: lws,
stream: &self.stream,
args: Vec::new(),
})
}
/// Puts data from an existing buffer onto the GPU.
pub fn write_from_buffer<T>(&self, buffer: &mut Buffer<T>, data: &[T]) -> GPUResult<()> {
assert!(data.len() <= buffer.length, "Buffer is too small");
// Transmuting types is safe as long a sizes match.
let bytes = unsafe {
std::slice::from_raw_parts(
data.as_ptr() as *const T as *const u8,
data.len() * std::mem::size_of::<T>(),
)
};
// It is safe as we synchronize the stream after the call.
unsafe { buffer.buffer.async_copy_from(bytes, &self.stream)? };
self.stream.synchronize()?;
Ok(())
}
/// Reads data from the GPU into an existing buffer.
pub fn read_into_buffer<T>(&self, buffer: &Buffer<T>, data: &mut [T]) -> GPUResult<()> {
assert!(data.len() <= buffer.length, "Buffer is too small");
// Transmuting types is safe as long a sizes match.
let bytes = unsafe {
std::slice::from_raw_parts_mut(
data.as_mut_ptr() as *mut T as *mut u8,
data.len() * std::mem::size_of::<T>(),
)
};
// It is safe as we synchronize the stream after the call.
unsafe { buffer.buffer.async_copy_to(bytes, &self.stream)? };
self.stream.synchronize()?;
Ok(())
}
/// Run some code in the context of the program.
///
/// It sets the correct contexts.
///
/// It takes the program as a parameter, so that we can use the same function body, for both
/// the OpenCL and the CUDA code path. The only difference is the type of the program.
pub fn run<F, R, E, A>(&self, fun: F, arg: A) -> Result<R, E>
where
F: FnOnce(&Self, A) -> Result<R, E>,
E: From<GPUError>,
{
rustacuda::context::CurrentContext::set_current(&self.context).map_err(Into::into)?;
let result = fun(self, arg);
Self::pop_context();
result
}
/// Pop the current context.
///
/// It panics as it's an unrecoverable error.
fn pop_context() {
rustacuda::context::ContextStack::pop().expect("Cannot remove context.");
}
}
// TODO vmx 2021-07-07: Check if RustaCUDA types used in `Program` can be made `Send`, so that
// this manual `Send` implementation is no longer needed.
unsafe impl Send for Program {}
/// Abstraction for kernel arguments.
///
/// Kernel arguments implement this trait, so that they can be converted it into the correct
/// pointers needed by the actual kernel call.
pub trait KernelArgument {
/// Converts into a C void pointer.
fn as_c_void(&self) -> *mut c_void;
/// Returns the shared memory size. This is usally 0, except for [`LocalBuffer`]s. This
/// informations is used to allocate the memory correctly.
fn shared_mem(&self) -> u32 {
0
}
}
impl<T> KernelArgument for Buffer<T> {
fn as_c_void(&self) -> *mut c_void {
&self.buffer as *const _ as _
}
}
impl KernelArgument for i32 {
fn as_c_void(&self) -> *mut c_void {
self as *const _ as _
}
}
impl KernelArgument for u32 {
fn as_c_void(&self) -> *mut c_void {
self as *const _ as _
}
}
impl<T> KernelArgument for LocalBuffer<T> {
// This is a hack: on CUDA kernels, you cannot have `__shared__` (`__local` in OpenCL lingo)
// kernel parameters. Hence, just pass on an arbirtary valid pointer. It won't be used, so it
// doesn't matter where it actually points to. A null pointer cannot be used as CUDA would
// return an "invalid argument" error.
fn as_c_void(&self) -> *mut c_void {
self as *const _ as _
}
fn shared_mem(&self) -> u32 {
u32::try_from(self.length * std::mem::size_of::<T>())
.expect("__shared__ memory allocation is too big.")
}
}
/// A kernel that can be executed.
pub struct Kernel<'a> {
function: rustacuda::function::Function<'a>,
global_work_size: usize,
local_work_size: usize,
stream: &'a Stream,
args: Vec<&'a dyn KernelArgument>,
}
impl fmt::Debug for Kernel<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let args = self
.args
.iter()
.map(|arg| (arg.as_c_void(), arg.shared_mem()))
.collect::<Vec<_>>();
f.debug_struct("Kernel")
.field("function", &self.function)
.field("global_work_size", &self.global_work_size)
.field("local_work_size", &self.local_work_size)
.field("stream", &self.stream)
.field("args", &args)
.finish()
}
}
impl<'a> Kernel<'a> {
/// Set a kernel argument.
///
/// The arguments must live as long as the kernel. Hence make sure they are not dropped as
/// long as the kernel is in use.
///
/// Example where this behaviour is enforced and leads to a compile-time error:
///
/// ```compile_fail
/// use rust_gpu_tools::cuda::Program;
///
/// fn would_break(program: &Program) {
/// let data = vec![1, 2, 3, 4];
/// let buffer = program.create_buffer_from_slice(&data).unwrap();
/// let kernel = program.create_kernel("my_kernel", 4, 256).unwrap();
/// let kernel = kernel.arg(&buffer);
/// // This drop wouldn't error if the arguments wouldn't be bound to the kernels lifetime.
/// drop(buffer);
/// kernel.run().unwrap();
/// }
/// ```
pub fn arg<T: KernelArgument>(mut self, t: &'a T) -> Self {
self.args.push(t);
self
}
/// Actually run the kernel.
///
/// ### Panics
///
/// Panics if the wrong number of arguments was provided.
pub fn run(self) -> GPUResult<()> {
// There can only be a single [`LocalBuffer`], due to CUDA restrictions.
let shared_mem = self
.args
.iter()
.try_fold(0, |acc, &arg| -> GPUResult<u32> {
let mem = arg.shared_mem();
match (mem, acc) {
// No new shared memory needs to be allocated.
(0, _) => Ok(acc),
// Some shared memory needs to be allocated.
(_, 0) => Ok(mem),
// There should be memory allocated more than once
(_, _) => Err(GPUError::Generic(
"There cannot be more than one `LocalBuffer`.".to_string(),
)),
}
})?;
let args = self
.args
.iter()
.map(|arg| arg.as_c_void())
.collect::<Vec<_>>();
// It is safe to launch the kernel as the arguments need to live when the kernel is called,
// and the buffers are copied synchronuously. At the end of the execution, the underlying
// stream is synchronized.
unsafe {
self.stream.launch(
&self.function,
self.global_work_size as u32,
self.local_work_size as u32,
shared_mem,
&args,
)?;
};
// Synchronize after the kernel execution, so that the underlying pointers can be
// invalidated/dropped.
self.stream.synchronize()?;
Ok(())
}
}