1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
mod dict;
mod error;
mod gd_bit_unit;
mod gd_byte_unit;
mod separator;
use async_trait::async_trait;
use dict::BasisDict;
use error::*;
use gd_bit_unit::BitGD;
use gd_byte_unit::ByteGD;
use libecc::{types::*, *};
#[derive(Debug, Clone)]
pub enum GD {
ReedSolomon(usize, usize),
Hamming(usize),
}
impl GD {
pub async fn setup(&self, dict_size: usize) -> Result<GDInner> {
match self {
GD::ReedSolomon(a, b) => Ok(GDInner::ReedSolomon(ByteGD {
code: ReedSolomon::new(*a, *b).await?,
basis_dict: BasisDict::<U8VRep>::new(dict_size),
chunk_bytelen: *a,
})),
GD::Hamming(a) => {
let code = Hamming::new(*a as u32)?;
ensure!(code.code_bit_len >= 8, "Insufficient code length");
let chunk_bytelen = (code.code_bit_len - code.code_bit_len % 8) / 8;
Ok(GDInner::Hamming(BitGD {
code,
basis_dict: BasisDict::<BVRep>::new(dict_size),
chunk_bytelen,
}))
}
}
}
}
#[derive(Debug, Clone)]
pub enum GDInner {
ReedSolomon(ByteGD<ReedSolomon>),
Hamming(BitGD<Hamming>),
}
impl GDInner {
pub fn unit_check(&self) {
match &self {
GDInner::Hamming(x) => x.unit_check(),
GDInner::ReedSolomon(x) => x.unit_check(),
}
}
pub async fn dedup(&mut self, buf: &U8SRep) -> Result<Deduped> {
match self {
GDInner::Hamming(x) => x.dedup(buf).await,
GDInner::ReedSolomon(x) => x.dedup(buf).await,
}
}
pub async fn dup(&mut self, deduped: &Deduped) -> Result<U8VRep> {
match self {
GDInner::Hamming(x) => x.dup(deduped).await,
GDInner::ReedSolomon(x) => x.dup(deduped).await,
}
}
pub async fn set_error_alignment(&mut self, trans: &[U8VRep]) -> Result<()> {
match self {
GDInner::Hamming(_) => Err(anyhow!("No such method for Hamming codes")),
GDInner::ReedSolomon(x) => x.set_error_alignment(trans).await,
}
}
}
#[async_trait]
pub trait GDTrait {
fn unit_check(&self);
async fn dedup(&mut self, buf: &U8SRep) -> Result<Deduped>;
async fn dup(&mut self, deduped: &Deduped) -> Result<U8VRep>;
}
#[derive(Debug, Clone)]
pub struct Deduped {
pub data: U8VRep,
pub last_chunk_pad_bytelen: usize,
}
#[cfg(test)]
mod tests {
use super::*;
use rand::Rng;
const WORD_STR: &str =
"寿限無(じゅげむ)寿限無(じゅげむ)五劫(ごこう)のすりきれ海砂利(かいじゃり)padpadpadpadpadpadpadpad";
#[tokio::test]
async fn hamming_works() {
let words = WORD_STR.to_string().repeat(128).into_bytes();
for hamming_deg in 4..11 {
let hamming_dict_size = 511;
let mut gd_dedup = GD::Hamming(hamming_deg)
.setup(hamming_dict_size)
.await
.unwrap();
let mut gd_dup = GD::Hamming(hamming_deg)
.setup(hamming_dict_size)
.await
.unwrap();
let x = gd_dedup.dedup(&words).await.unwrap();
let y = gd_dup.dup(&x).await.unwrap();
assert_eq!(y, words);
println!(
"Hamimng code deg = {} > Deduped rate: {:.2} %",
hamming_deg,
100.0 * (x.data.len() as f32) / (y.len() as f32)
);
}
}
const RS_MAX_DICT_BITS: usize = 8;
const RS_DICT_PARAM: usize = 2;
const RS_REPEAT: usize = 1024;
#[tokio::test]
async fn rs_works() {
let mut rng = rand::thread_rng();
let words_org = WORD_STR.to_string().into_bytes().repeat(RS_REPEAT);
for code_len in vec![128].into_iter() {
for msg_len in 2isize.max(code_len as isize - 8) as usize..code_len {
let dict_size = (1 << ((code_len - msg_len) * RS_DICT_PARAM).min(RS_MAX_DICT_BITS)) - 1;
let mut gd_dedup = GD::ReedSolomon(code_len, msg_len)
.setup(dict_size)
.await
.unwrap();
let mut gd_dup = GD::ReedSolomon(code_len, msg_len)
.setup(dict_size)
.await
.unwrap();
let words: Vec<u8> = words_org
.clone()
.into_iter()
.enumerate()
.map(|(idx, b)| {
if idx % code_len < msg_len {
b
} else {
let random_pad: u8 = rng.gen();
b ^ random_pad
}
})
.collect();
let x = gd_dedup.dedup(&words).await.unwrap();
let y = gd_dup.dup(&x).await.unwrap();
assert_eq!(y, words);
println!(
"RS code ({}, {}) over GF(256) of dict size {} > Deduped rate: {:.2} %",
code_len,
msg_len,
dict_size,
100.0 * (x.data.len() as f32) / (y.len() as f32)
);
}
}
}
#[tokio::test]
async fn rs_align_error_works() {
let trans: Vec<Vec<u8>> = vec![
vec![1u8, 0, 0, 0],
vec![1u8, 1, 1, 4],
vec![1u8, 1, 3, 0],
vec![1u8, 2, 0, 0],
];
let dict_size = 15;
let code_len = 4;
let msg_len = 3;
let mut gd_dedup = GD::ReedSolomon(code_len, msg_len)
.setup(dict_size)
.await
.unwrap();
let mut gd_dup = GD::ReedSolomon(code_len, msg_len)
.setup(dict_size)
.await
.unwrap();
let res_dedup = gd_dedup.set_error_alignment(&trans).await;
let res_dup = gd_dup.set_error_alignment(&trans).await;
assert!(res_dedup.is_ok());
assert!(res_dup.is_ok());
let words = WORD_STR.to_string().into_bytes().repeat(RS_REPEAT);
let x = gd_dedup.dedup(&words).await.unwrap();
let y = gd_dup.dup(&x).await.unwrap();
assert_eq!(y, words);
println!(
"RS code ({}, {}) over GF(256) of dict size {} > Deduped rate: {:.2} %",
code_len,
msg_len,
dict_size,
100.0 * (x.data.len() as f32) / (y.len() as f32)
);
}
}