1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
use crate::bitset::BitSet;
use crate::u64impl::DenseBitSet;

use std::cmp::{max, min};
use std::fmt;
use std::hash::{Hash, Hasher};

/// Overload of &, &=, |, |=, ^, ^=, !, <<, <<=, >>, >>=
use std::ops::{
    BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not, Shl, ShlAssign, Shr,
    ShrAssign,
};

/// Provides a dense `BitSet` implementation (only limited by available memory)
///
/// Internally, a `Vec<u64>` data structure is used to store information.
///
/// This structure implements `BitSet, Clone, Default, Debug, Hash, PartialEq, Eq` and bit operations.
#[derive(Default, Clone)]
pub struct DenseBitSetExtended {
    state: Vec<u64>,
    size: usize,
}

impl DenseBitSetExtended {
    /// Returns a new empty `DenseBitsetExtended`
    ///    
    /// # Example
    /// ```
    /// # use rust_dense_bitset::DenseBitSetExtended;
    /// let bs = DenseBitSetExtended::new();
    /// ```
    pub fn new() -> Self {
        Self {
            state: vec![],
            size: 0,
        }
    }

    /// Returns an empty `DenseBitsetExtended` with pre-allocated memory of `size` bits.
    ///
    /// This is useful to avoid additional allocations is situations where the bitset's
    /// space requirements are known in advance.
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::{BitSet, DenseBitSetExtended};
    /// let mut bs = DenseBitSetExtended::with_capacity(128);
    /// bs.set_bit(127, true); // No additional allocation performed
    /// ```
    ///
    /// # Panics
    /// This function will not accept `size` parameters beyond 64000 bits.
    pub fn with_capacity(size: usize) -> Self {
        assert!(
            size < 64_000,
            "(Temporary?) We don't allow bitsets larger than 64k for now."
        );
        let state: Vec<u64> = Vec::with_capacity(1 + (size >> 6));
        Self { state, size: 0 }
    }

    /// Returns a `DenseBitSetExtended` extending a given `DenseBitSet`.
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::{BitSet, DenseBitSet, DenseBitSetExtended};
    /// let dbs = DenseBitSet::from_integer(0b111000111);
    /// let dbse = DenseBitSetExtended::from_dense_bitset(dbs);
    /// println!("{}", dbse.to_string())
    /// ```
    pub fn from_dense_bitset(dbs: DenseBitSet) -> Self {
        let state = vec![dbs.to_integer()];
        let size = 64;
        Self { state, size }
    }

    /// Returns `true` if and only if all bits are set to `true`
    pub fn all(&self) -> bool {
        let l = self.state.len();
        for i in 0..l - 1 {
            if self.state[i] != u64::max_value() {
                return false;
            }
        }
        if self.size % 64 == 0 {
            if self.state[l - 1] != u64::max_value() {
                return false;
            }
        } else if self.state[l - 1] != ((1 << (self.size % 64)) - 1) {
            return false;
        }
        true
    }

    /// Returns `true` if at least one bit is set to `true`
    pub fn any(&self) -> bool {
        for &s in &self.state {
            if s > 0 {
                return true;
            }
        }
        false
    }

    /// Returns `true` if all the bits are set to `false`
    pub fn none(&self) -> bool {
        !self.any()
    }

    /// Returns the size (in bits) of the bitset
    pub fn get_size(&self) -> usize {
        self.size
    }

    /// Returns an integer representation of the bitsting starting at the given `position` with given `length` (little endian convention).
    ///
    /// Note: this method can extract up to 64 bits into an `u64`. For larger extractions, use `subset` instead.
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::{DenseBitSet, DenseBitSetExtended};
    /// let dbs = DenseBitSet::from_integer(0b111000111);
    /// let dbse = DenseBitSetExtended::from_dense_bitset(dbs);
    /// println!("{}", dbse.extract_u64(2, 4)); // Extracts "0001" (displayed with leading zeros)
    /// ```
    ///
    /// # Panics
    ///
    /// The function panics if `length` is zero
    /// ```rust,should_panic
    /// # use rust_dense_bitset::{DenseBitSet, DenseBitSetExtended};
    /// # let dbs = DenseBitSet::from_integer(0b111000111);
    /// # let dbse = DenseBitSetExtended::from_dense_bitset(dbs);
    /// let panic_me = dbse.extract_u64(3, 0);
    /// ```
    pub fn extract_u64(&self, position: usize, length: usize) -> u64 {
        assert!(
            length <= 64,
            "This implementation is currently limited to 64 bit bitsets."
        );
        assert!(length > 0, "Cannot extract a zero-width slice.");
        if position >= self.size {
            // The extraction is beyond any bit set to 1
            return 0;
        }

        let idx = position >> 6;
        let offset = position % 64;
        let actual_length = if position + length > self.size {
            self.size - position
        } else {
            length
        };

        if actual_length + offset < 64 {
            // Remain within the boundary of an element
            (self.get(idx) >> offset) & ((1 << actual_length) - 1)
        } else if actual_length + offset == 64 {
            // Special case to avoid masking overflow
            self.get(idx) >> offset
        } else {
            // Possibly split between neighbour elements

            // Number of bits to take from the next element
            let remainder = actual_length + offset - 64;

            let lsb = self.state[idx] >> offset;

            if self.state.len() == idx + 1 {
                // If there is no next element, assume it is zero
                lsb
            } else {
                // Otherwise get the remaining bits and assemble the response
                let msb = self.state[idx + 1] & ((1 << remainder) - 1);
                (msb << (64 - offset)) | lsb
            }
        }
    }

    /// Returns a `DenseBitSetExtended` of given `length` whose bits are extracted from the given `position`.
    ///
    /// # Example
    ///
    /// ```
    /// # use rust_dense_bitset::{BitSet, DenseBitSet, DenseBitSetExtended};
    /// let dbs = DenseBitSet::from_integer(0b111000111);
    /// let dbse = DenseBitSetExtended::from_dense_bitset(dbs);
    /// println!("{}", dbse.subset(2, 4).to_string());
    /// ```
    pub fn subset(&self, position: usize, length: usize) -> Self {
        if length == 0 {
            return Self {
                state: vec![],
                size: 0,
            };
        }

        let segments = 1 + ((length - 1) >> 6);
        let mut state = vec![];

        for l in 0..segments {
            state.push(self.extract_u64(l * 64 + position, 64));
        }
        Self {
            state,
            size: length,
        }
    }

    /// Inserts the first `length` bits of `other` at the given `position` in the current structure.
    ///
    ///  # Example
    /// ```
    /// # use rust_dense_bitset::{DenseBitSet, DenseBitSetExtended};
    /// let mut bs = DenseBitSetExtended::new();
    /// let bs2 =
    ///    DenseBitSetExtended::from_dense_bitset(DenseBitSet::from_integer(0b1011011101111));
    /// bs.insert(&bs2, 60, 13);
    /// ```
    pub fn insert(&mut self, other: &Self, position: usize, length: usize) {
        let l = (length >> 6) + 1;
        let size_before_insertion = self.size;
        if length % 64 == 0 {
            for i in 0..l {
                self.insert_u64(other.state[i], position + i * 64, 64);
            }
        } else {
            for i in 0..l - 1 {
                self.insert_u64(other.state[i], position + i * 64, 64);
            }
            self.insert_u64(other.state[l - 1], position + (l - 1) * 64, length % 64);
        }

        self.size = max(size_before_insertion, position + length);
    }

    /// Inserts a `length`-bit integer as a bitset at the given `position`.
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::DenseBitSetExtended;
    /// let mut bs = DenseBitSetExtended::new();
    /// bs.insert_u64(0b1011011101111, 50, 64);
    /// ```
    pub fn insert_u64(&mut self, value: u64, position: usize, length: usize) {
        let idx = position >> 6;
        let offset = position % 64;

        // First, resize the bitset if necessary
        if 1 + ((position + length - 1) >> 6) > self.state.len() {
            // We need to extend the bitset to accomodate this insertion
            let num_seg = 1 + ((position + length - 1) >> 6) - self.state.len();

            for _ in 0..num_seg {
                self.state.push(0);
            }
        }
        self.size = max(self.size, position + length);

        // Second, perform the actual insertion
        if offset == 0 && length == 64 {
            // Easiest case
            self.state[idx] = value;
        } else if offset + length - 1 < 64 {
            // Easy case: inserting fewer than 64 bits in an u64
            let mut u = u64::max_value();
            u ^= ((1 << length) - 1) << offset;
            self.state[idx] &= u;
            self.state[idx] |= value << offset;
        } else {
            // Not so easy case: we need to split `value` in twain, zero the appropriate bits in the
            // two segments, and perform the insertion

            let lsb = (value & ((1 << (64 - offset)) - 1)) << offset;
            let mask_lsb = u64::max_value() >> (64 - offset);

            let msb = value >> (64 - offset);
            let mask_msb = u64::max_value() << ((position + length) % 64);

            self.state[idx] = (self.state[idx] & mask_lsb) | lsb;
            self.state[idx + 1] = (self.state[idx + 1] & mask_msb) | msb;
        }
    }

    /// Returns a bit-reversed bitset.
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::{BitSet, DenseBitSet, DenseBitSetExtended};
    /// let val = 66612301234;
    /// let dbs = DenseBitSet::from_integer(val);
    /// let ext_dbs = DenseBitSetExtended::from_dense_bitset(dbs);
    /// println!("{}", dbs.to_string());
    /// println!("{}", ext_dbs.reverse().to_string());
    /// ```
    pub fn reverse(&self) -> Self {
        let mut state = vec![];
        for &s in &self.state {
            let bs = DenseBitSet::from_integer(s).reverse().to_integer();
            state.push(bs);
        }
        state.reverse();
        Self {
            state,
            size: self.size,
        }
    }

    /// Returns a left rotation of the bitset by `shift` bits.
    ///
    /// Note: The bitset is extended by `shift` bits by this operation.
    pub fn rotl(self, shift: usize) -> Self {
        // Rotation is periodic
        let shift_amount = shift % self.size;
        let size_before_shift = self.size;

        if shift_amount == 0 {
            return self;
        }

        let mut shifted = (self.clone() << shift).subset(0, size_before_shift);
        let extra = self.subset(size_before_shift - shift_amount, shift_amount);

        shifted.insert(&extra, 0, shift_amount);

        shifted
    }

    /// Returns a right rotation of the bitset by `shift` bits.
    pub fn rotr(self, shift: usize) -> Self {
        // Rotation is periodic
        let shift_amount = shift % self.size;
        let size_before_shift = self.size;

        if shift_amount == 0 {
            return self;
        }

        let extra = self.subset(0, shift_amount);
        let mut shifted = self >> shift_amount;

        shifted.insert(&extra, size_before_shift - shift_amount, shift_amount);

        shifted
    }

    /// Constructs a `DenseBitSetExtended` from a provided `String`.
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::{DenseBitSetExtended};
    /// let bs2 = DenseBitSetExtended::from_string(String::from("f8d5215a52b57ea0aeb294af576a0aeb"), 16);
    /// ```
    ///
    /// # Panics
    /// This function expects a radix between 2 and 32 included, and will otherwise panic.
    /// This function will also panic if incorrect characters are provided.
    pub fn from_string(s: String, radix: u32) -> Self {
        assert!(
            radix.is_power_of_two(),
            "Only power of two radices are supported"
        );
        assert!(radix > 1, "Radix must be > 1");
        assert!(radix <= 32, "Radix must be <= 32");

        let log_radix = u64::from(radix).trailing_zeros();
        let chunk_size = 64 / log_radix as usize;
        let mut size = 0;

        let mut state = vec![];
        let mut cur = s;
        while !cur.is_empty() {
            if cur.len() > chunk_size {
                let (ms, ls) = cur.split_at(cur.len() - chunk_size);
                let val = u64::from_str_radix(ls, radix).expect("Error while parsing input.");
                state.push(val);
                cur = String::from(ms);
                size += 64;
            } else {
                let val = u64::from_str_radix(&cur.to_string(), radix)
                    .expect("Error while parsing input.");
                state.push(val);
                size += cur.len() * (log_radix as usize);
                break;
            }
        }
        Self { state, size }
    }

    /// Returns the position of the first set bit (little endian convention)
    ///
    /// # Example
    /// ```
    /// # use rust_dense_bitset::{DenseBitSet,DenseBitSetExtended};
    /// let dbs = DenseBitSetExtended::from_dense_bitset( DenseBitSet::from_integer(256) ) << 12;
    /// println!("{}", dbs.first_set());
    /// ```
    pub fn first_set(&self) -> usize {
        for i in 0..self.state.len() {
            let cur = self.state[i];
            if cur != 0 {
                return i * 64 + (cur.trailing_zeros() as usize);
            }
        }
        self.size
    }

    fn get(&self, index: usize) -> u64 {
        match index {
            u if u < self.state.len() => self.state[u],
            _ => 0,
        }
    }
}

/// This is an extended implementation of the `BitSet` trait. It dynamically resizes the bitset as necessary
/// to accomodate growing or shrinking operations (e.g. left shifts) and is only limited by available memory.
/// In practice however, we (arbitrarily) limited allocation to 64000 bits.
///
/// Note: The `BitSet` trait must be in scope in order to use methods from this trait.
///
/// Note: The `Copy` trait cannot be implemented for `DenseBitSetExtended` (for the same reasons avec `Vec`).
impl BitSet for DenseBitSetExtended {
    /// Sets the bit at index `position` to `value`.
    fn set_bit(&mut self, position: usize, value: bool) {
        let idx = position >> 6;
        let offset = position % 64;

        assert!(
            idx < 1000,
            "(Temporary?) We don't allow bitsets larger than 64k for now."
        );

        if idx >= self.state.len() {
            if value {
                // This triggers a resize, we only do it if we need to insert a 1
                for _ in 0..=(idx - self.state.len()) {
                    self.state.push(0);
                }
                self.state[idx] |= 1 << offset
            }
        // Note: To insert a zero, we do nothing, as the value is zero by default
        } else if value {
            self.state[idx] |= 1 << offset
        } else {
            self.state[idx] &= !(1 << offset)
        }
        if position >= self.size {
            self.size = position + 1;
        }
    }

    /// Get the bit at index `position`.
    fn get_bit(&self, position: usize) -> bool {
        if position > self.size {
            return false;
        }

        let idx = position >> 6;
        let offset = position % 64;

        (self.state[idx] >> offset) & 1 == 1
    }

    /// Returns the bitset's Hamming weight (in other words, the number of bits set to true).
    fn get_weight(&self) -> u32 {
        let mut hw = 0;
        for &s in &self.state {
            hw += s.count_ones();
        }
        hw
    }

    /// This resets the bitset to its empty state.
    fn reset(&mut self) {
        self.state = vec![];
        self.size = 0
    }

    /// Returns a representation of the bitset as a `String`.
    fn to_string(self) -> String {
        if self.state.is_empty() {
            return format!("{:064b}", 0);
        }

        let mut bss = vec![];

        if self.size % 64 == 0 {
            for s in self.state {
                bss.push(format!("{:064b}", s));
            }
        } else {
            for i in 0..self.state.len() - 1 {
                bss.push(format!("{:064b}", self.state[i]));
            }
            bss.push(format!(
                "{:064b}",
                self.state[self.state.len() - 1] & ((1 << (self.size % 64)) - 1)
            ));
        }
        bss.reverse();
        bss.join("")
    }
}

impl fmt::Debug for DenseBitSetExtended {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut bss = String::new();

        for i in 0..self.state.len() {
            for j in 0..64 {
                bss += if self.get_bit((self.state.len() - i - 1) * 64 + (63 - j)) {
                    "1"
                } else {
                    "0"
                };
            }
        }
        write!(f, "0b{}", bss)
    }
}

impl PartialEq for DenseBitSetExtended {
    fn eq(&self, other: &Self) -> bool {
        if self.size != other.size {
            return false;
        }
        for i in 0..self.state.len() {
            if self.state[i] != other.state[i] {
                return false;
            }
        }
        true
    }
}

impl Hash for DenseBitSetExtended {
    fn hash<H: Hasher>(&self, state: &mut H) {
        for s in &self.state {
            s.hash(state);
        }
    }
}

impl Eq for DenseBitSetExtended {}

impl Not for DenseBitSetExtended {
    type Output = Self;
    fn not(self) -> Self {
        let l = self.state.len();
        let mut inv = Self {
            state: Vec::with_capacity(l),
            size: self.size,
        };
        for i in 0..l - 1 {
            inv.state.push(!self.state[i])
        }
        if self.size % 64 == 0 {
            inv.state.push(!self.state[l - 1]);
        } else {
            inv.state
                .push((!self.state[l - 1]) & ((1 << (self.size % 64)) - 1));
        }
        inv
    }
}

impl BitAnd for DenseBitSetExtended {
    type Output = Self;
    fn bitand(self, rhs: Self) -> Self {
        let l = min(self.state.len(), rhs.state.len());
        let mut v = Vec::with_capacity(l);

        // Note: there is no need to go further because x & 0 == 0
        for i in 0..l {
            v.push(self.state[i] & rhs.state[i])
        }

        Self {
            state: v,
            size: min(self.size, rhs.size),
        }
    }
}

impl BitAndAssign for DenseBitSetExtended {
    fn bitand_assign(&mut self, rhs: Self) {
        // Note: there is no need to go further because x & 0 == 0
        let l = min(self.state.len(), rhs.state.len());
        for i in 0..l {
            self.state[i] &= rhs.state[i];
        }
        self.size = min(self.size, rhs.size);
    }
}

impl BitOr for DenseBitSetExtended {
    type Output = Self;
    fn bitor(self, rhs: Self) -> Self {
        let l = max(self.state.len(), rhs.state.len());
        let mut v = Vec::with_capacity(l);

        for i in 0..l {
            if i < self.state.len() && i < rhs.state.len() {
                // x | y
                v.push(self.state[i] | rhs.state[i])
            } else if i >= self.state.len() {
                // x | 0 == x
                v.push(rhs.state[i])
            } else {
                // x | 0 == x
                v.push(self.state[i])
            }
        }

        Self {
            state: v,
            size: max(self.size, rhs.size),
        }
    }
}

impl BitOrAssign for DenseBitSetExtended {
    fn bitor_assign(&mut self, rhs: Self) {
        let l = max(self.state.len(), rhs.state.len());
        for i in 0..l {
            if i < self.state.len() && i < rhs.state.len() {
                // x | y
                self.state[i] |= rhs.state[i]
            } else if i >= self.state.len() {
                // x | 0 == x
                self.state[i] = rhs.state[i]
            }
            // if rhs.state[i] == 0 we do nothing because x | 0 == x
        }
    }
}

impl BitXor for DenseBitSetExtended {
    type Output = Self;
    fn bitxor(self, rhs: Self) -> Self {
        let l = max(self.state.len(), rhs.state.len());
        let mut v = Vec::with_capacity(l);

        for i in 0..l {
            if i < self.state.len() && i < rhs.state.len() {
                // x ^ y
                v.push(self.state[i] ^ rhs.state[i])
            } else if i >= self.state.len() {
                // x ^ 0 == x
                v.push(rhs.state[i])
            } else {
                // x ^ 0 == x
                v.push(self.state[i])
            }
        }

        Self {
            state: v,
            size: max(self.size, rhs.size),
        }
    }
}

impl BitXorAssign for DenseBitSetExtended {
    fn bitxor_assign(&mut self, rhs: Self) {
        let l = max(self.state.len(), rhs.state.len());
        for i in 0..l {
            if i < self.state.len() && i < rhs.state.len() {
                // x ^ y
                self.state[i] ^= rhs.state[i]
            } else if i >= self.state.len() {
                // x ^ 0 == x
                self.state[i] = rhs.state[i]
            }
            // if rhs.state[i] == 0 we do nothing because x ^ 0 == x
        }
    }
}

impl Shl<usize> for DenseBitSetExtended {
    type Output = Self;
    fn shl(self, rhs: usize) -> Self {
        let mut v = DenseBitSetExtended::with_capacity(self.size + rhs);

        // Note: this may not be the most efficient implementation
        for i in 0..self.size {
            let source = i;
            let dest = i + rhs;
            v.set_bit(dest, self.get_bit(source));
        }
        v
    }
}

impl ShlAssign<usize> for DenseBitSetExtended {
    fn shl_assign(&mut self, rhs: usize) {
        let trailing_zeros = rhs >> 6;
        let actual_shift = rhs % 64;
        if rhs > (self.state.len() * 64 - self.size) {
            self.state.push(0);
        }
        let l = self.state.len();
        for i in 0..(l - 1) {
            self.state[l - i - 1] = (self.state[l - i - 1] << actual_shift)
                | (self.state[l - i - 2] >> (64 - actual_shift))
        }
        self.state[0] <<= actual_shift;
        for _ in 0..trailing_zeros {
            self.state.insert(0, 0);
        }
        self.size += rhs;
    }
}

impl Shr<usize> for DenseBitSetExtended {
    type Output = Self;
    fn shr(self, rhs: usize) -> Self {
        if rhs >= self.size {
            Self {
                state: vec![],
                size: 0,
            }
        } else {
            let mut v = DenseBitSetExtended::with_capacity(self.size - rhs);

            // Note: this may not be the most efficient implementation
            for i in 0..(self.size - rhs) {
                let source = i + rhs;
                let dest = i;
                v.set_bit(dest, self.get_bit(source));
            }

            v
        }
    }
}

impl ShrAssign<usize> for DenseBitSetExtended {
    fn shr_assign(&mut self, rhs: usize) {
        if rhs >= self.size {
            self.reset();
        }
        let to_drop = rhs >> 6;
        let actual_shift = rhs % 64;
        for _ in 0..to_drop {
            self.state.remove(0);
        }
        let l = self.state.len();
        for i in 0..(l - 1) {
            self.state[i] =
                (self.state[i] >> actual_shift) | (self.state[i + 1] << (64 - actual_shift))
        }
        self.state[l - 1] >>= actual_shift;
        self.size -= rhs;
    }
}