1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
use rand::Rng;

const SCREEN_WIDTH: usize = 64;
const SCREEN_HEIGHT: usize = 32;

/// The sprites for the digits 0-F, as bytes
pub const SPRITES: [[u8; 5]; 16] = [
    [0xF0, 0x90, 0x90, 0x90, 0xF0],
    [0x00, 0x60, 0x20, 0x20, 0x70],
    [0xF0, 0x10, 0xF0, 0x80, 0xF0],
    [0xF0, 0x10, 0xF0, 0x10, 0xF0],
    [0x90, 0x90, 0xF0, 0x10, 0x10],
    [0xF0, 0x80, 0xF0, 0x10, 0xF0],
    [0xF0, 0x80, 0xF0, 0x90, 0xF0],
    [0xF0, 0x10, 0x20, 0x40, 0x40],
    [0xF0, 0x90, 0xF0, 0x90, 0xF0],
    [0xF0, 0x90, 0xF0, 0x10, 0xF0],
    [0xF0, 0x90, 0xF0, 0x90, 0x90],
    [0xE0, 0x90, 0xE0, 0x90, 0xE0],
    [0xF0, 0x80, 0x80, 0x80, 0xF0],
    [0xE0, 0x90, 0x90, 0x90, 0xE0],
    [0xF0, 0x80, 0xF0, 0x80, 0xF0],
    [0xF0, 0x80, 0xF0, 0x80, 0x80],
];

/**
 * The actual CHIP-8 processor.
 * Decodes and runs any opcodes, stores memory, stores screen.
 * Needs to be paired with an interface to allow the user to actually interact with the program.
 */
pub struct Processor {
    // Buffer for the screen
    screen_buffer: [bool; SCREEN_WIDTH * SCREEN_HEIGHT],
    // Registers (1 through F)
    registers: [u8; 0x10],
    // Program Counter
    pc: usize,
    // Stack and stack pointer
    stack: [u16; 0x10],
    sp: usize,
    // Memory
    mem: [u8; 0x1000],
    // I (index register)
    i: u16,
    // Delay timer
    dt: u8,
    // Sound timer
    st: u8,
    // Keys that are currently pressed
    input_state: [bool; 0x10],
    // debug print mode used in tests
    debug_print: bool,
    // Key that was just released, should be set by the interface
    // Used for LD X KP and nothing else
    // Reset every execution
    last_key_released: Option<u8>,
}

impl Processor {
    pub fn new() -> Processor {
        let mut c = Processor {
            screen_buffer: [false; SCREEN_WIDTH * SCREEN_HEIGHT],
            registers: [0x00; 0x10],
            pc: 0x200,
            stack: [0x00; 0x10],
            sp: 0,
            mem: [0x00; 0x1000],
            i: 0,
            dt: 0,
            st: 0,
            input_state: [false; 0x10],
            debug_print: false,
            last_key_released: None,
        };
        (0..0x10).for_each(|i| c.mem[(6 * i)..(6 * i + 5)].copy_from_slice(&SPRITES[i]));

        return c;
    }
    /**
     * Load a program into memory
     **/
    pub fn load_program(&mut self, program: &[u8]) {
        program
            .iter()
            .enumerate()
            .for_each(|(i, v)| self.mem[0x200 + i] = *v);
    }
    /**
     * Load a program as u16s instead of u8s.
     * Mostly just a convenience function.
     **/
    #[allow(dead_code)]
    pub fn load_program_u16(&mut self, program: &[u16]) {
        (0..program.len()).for_each(|i| {
            self.mem[0x200 + 2 * i] = (program[i] >> 8) as u8;
            self.mem[0x200 + 2 * i + 1] = program[i] as u8;
        });
    }
    /**
     * Perform the next step in whatever program has been loaded into memory.
     * Equivalent to just calling `execute` and incrementing `PC` by 2
     **/
    pub fn step(&mut self) {
        self.execute(((self.mem[self.pc] as u16) << 8) | self.mem[self.pc + 1] as u16);
        self.pc += 2;
    }
    /**
     * Function that decrements both timer registers.
     * Should be called at a rate of 60Hz.
     **/
    pub fn on_tick(&mut self) {
        self.dt = self.dt.saturating_sub(1);
        self.st = self.st.saturating_sub(1);
    }
    /**
     * Update the current input states to the inputs given.
     **/
    pub fn update_inputs(&mut self, inputs: [bool; 0x10]) {
        self.input_state = inputs;
    }
    /**
     * Executes a single given instruction.
     * Does not increment PC or affect DT or ST.
     **/
    pub fn execute(&mut self, inst: u16) {
        if self.debug_print {
            println!("Inst is {:X}", inst);
            println!("Initial state:");
            self.dump_state();
        }
        /*
         * Match opcode
         * Naming convention for all these functions
         * FUNC_[ARGS...]
         * FUNC: Description of what the function does (i.e. ld for load, add for adding)
         * ARGS: The arguments
         *       The first arg is the one being saved to, so ld_rx_ry will load Ry into Rx
         *       r[x]: Register index
         *       kk: Constant
         *       addr: Address
         *       kp: Key press
         */
        match inst & 0xF000 {
            0x0000 => match inst & 0x0FFF {
                0x0E0 => self.clr(),
                0x0EE => self.ret(),
                _ => {}
            },
            0x1000 => self.jmp(inst & 0x0FFF),
            0x2000 => self.call(inst & 0xFFF),
            0x3000 => self.se_r_kk(reg_at(inst, 1), (inst & 0xFF) as u8),
            0x4000 => self.sne_r_kk(inst),
            0x5000 => {
                if inst & 0xF != 0 {
                    self.unknown_opcode_panic(inst);
                }
                self.se_rx_ry(reg_at(inst, 1), reg_at(inst, 2));
            }
            0x6000 => self.ld_r_kk(reg_at(inst, 1), (inst & 0xFF) as u8),
            0x7000 => self.add_r_kk(reg_at(inst, 1), (inst & 0xFF) as u8),
            0x8000 => {
                let rx = reg_at(inst, 1);
                let ry = reg_at(inst, 2);
                match inst & 0x000F {
                    0 => self.ld_rx_ry(rx, ry),
                    1 => self.or_rx_ry(rx, ry),
                    2 => self.and_rx_ry(rx, ry),
                    3 => self.xor_rx_ry(rx, ry),
                    4 => self.add_rx_ry(rx, ry),
                    5 => self.sub_rx_ry(rx, ry),
                    6 => self.shr(rx, ry),
                    7 => self.subn(rx, ry),
                    0xE => self.shl(rx, ry),
                    _ => self.unknown_opcode_panic(inst),
                }
            }
            0x9000 => {
                if inst & 0xF != 0 {
                    self.unknown_opcode_panic(inst);
                }
                self.sne_rx_ry(reg_at(inst, 1), reg_at(inst, 2));
            }
            0xA000 => self.ld_i(inst & 0x0FFF),
            0xB000 => self.jmp_r0(inst & 0x0FFF),
            0xC000 => self.rand(reg_at(inst, 1), inst & 0xFF),
            0xD000 => self.draw(reg_at(inst, 1), reg_at(inst, 2), reg_at(inst, 3)),
            0xE000 => match inst & 0x00FF {
                0x9E => self.skp_r(reg_at(inst, 1)),
                0xA1 => self.sknp_r(reg_at(inst, 1)),
                _ => self.unknown_opcode_panic(inst),
            },
            0xF000 => match inst & 0x00FF {
                0x07 => self.ld_r_dt(reg_at(inst, 1)),
                0x0A => self.ld_r_kp(reg_at(inst, 1)),
                0x15 => self.ld_dt_r(reg_at(inst, 1)),
                0x18 => self.ld_st_r(reg_at(inst, 1)),
                0x1E => self.add_i_r(reg_at(inst, 1)),
                0x29 => self.ld_i_spr_x(reg_at(inst, 1)),
                0x33 => self.ld_bcd_r(reg_at(inst, 1)),
                0x55 => self.store_at_i(reg_at(inst, 1)),
                0x65 => self.load_from_i(reg_at(inst, 1)),
                _ => self.unknown_opcode_panic(inst),
            },
            _ => self.unknown_opcode_panic(inst),
        }
        if self.debug_print {
            println!("Post state:");
            self.dump_state();
        }
        self.last_key_released = None;
    }

    fn unknown_opcode_panic(&self, opcode: u16) {
        panic!("Unknown opcode '{:04X}' provided!", opcode);
    }

    /**
     * Print the state of the machine (all registers, stack, PC, etc) in the console.
     */
    pub fn dump_state(&self) {
        for i in 0..16 {
            print!("V{:X} = {:#2X}, ", i, self.registers[i])
        }
        println!("");
        println!("Stack: {:X?}", self.stack);
        println!(
            "PC = {:X?}, SP = {:X?}, I = {:X?}, DT = {:X?}, ST = {:X?}",
            self.pc, self.sp, self.i, self.dt, self.st
        );
        print!("Memory:");
        self.mem.iter().enumerate().for_each(|(i, v)| {
            if i % 0x40 == 0 {
                print!("\n{:03X}: ", i);
            }
            print!("{:02X?}", v);
        });
        println!("");
        print!("Screen:");
        self.screen_buffer.iter().enumerate().for_each(|(i, s)| {
            if i % 64 == 0 {
                println!("");
            }
            print!("{}", if *s { 1 } else { 0 });
        });
        println!("");
    }

    fn ld_r_kk(&mut self, r: usize, kk: u8) {
        self.registers[r] = kk;
    }

    fn ld_rx_ry(&mut self, rx: usize, ry: usize) {
        self.registers[rx] = self.registers[ry];
    }

    fn or_rx_ry(&mut self, rx: usize, ry: usize) {
        self.registers[rx] = self.registers[rx] | self.registers[ry];
        self.registers[0xF] = 0x0;
    }

    fn and_rx_ry(&mut self, rx: usize, ry: usize) {
        self.registers[rx] = self.registers[rx] & self.registers[ry];
        self.registers[0xF] = 0x0;
    }

    fn xor_rx_ry(&mut self, rx: usize, ry: usize) {
        self.registers[rx] = self.registers[rx] ^ self.registers[ry];
        self.registers[0xF] = 0x0;
    }

    fn add_rx_ry(&mut self, rx: usize, ry: usize) {
        let v = self.registers[rx] as u16 + self.registers[ry] as u16;
        self.registers[rx] = v as u8;
        self.registers[0xF] = if v > 0xFF { 1 } else { 0 };
    }
    fn sub_rx_ry(&mut self, rx: usize, ry: usize) {
        let vf = if self.registers[ry] > self.registers[rx] {
            0
        } else {
            1
        };
        self.registers[rx] = self.registers[rx].wrapping_sub(self.registers[ry]);
        self.registers[0xF] = vf;
    }
    fn shr(&mut self, rx: usize, ry: usize) {
        let vf = if self.registers[ry] & 0x01 == 1 { 1 } else { 0 };
        self.registers[rx] = self.registers[ry] >> 1;
        self.registers[0xF] = vf;
    }
    fn subn(&mut self, rx: usize, ry: usize) {
        let vf = if self.registers[rx] > self.registers[ry] {
            0
        } else {
            1
        };
        self.registers[rx] = self.registers[ry].wrapping_sub(self.registers[rx]);
        self.registers[0xF] = vf;
    }
    fn shl(&mut self, rx: usize, ry: usize) {
        let vf = if self.registers[ry] & 0x80 == 0x80 {
            1
        } else {
            0
        };
        self.registers[rx] = self.registers[ry] << 1;
        self.registers[0xF] = vf;
    }
    fn clr(&mut self) {
        self.screen_buffer = [false; SCREEN_WIDTH * SCREEN_HEIGHT];
    }
    fn ret(&mut self) {
        self.sp -= 1;
        self.pc = self.stack[self.sp] as usize;
    }
    fn jmp(&mut self, addr: u16) {
        // addr - 2 since we are about to add 2
        self.pc = (addr - 2) as usize;
    }
    fn jmp_r0(&mut self, addr: u16) {
        self.pc = (addr + self.registers[0] as u16) as usize - 2;
    }
    fn call(&mut self, addr: u16) {
        self.stack[self.sp] = self.pc as u16;
        self.sp += 1;
        self.pc = addr as usize - 2;
    }
    fn se_r_kk(&mut self, r: usize, kk: u8) {
        if self.registers[r] == kk {
            self.pc += 2;
        }
    }
    fn se_rx_ry(&mut self, rx: usize, ry: usize) {
        if self.registers[rx] == self.registers[ry] {
            self.pc += 2;
        }
    }
    fn sne_r_kk(&mut self, inst: u16) {
        if self.registers[reg_at(inst, 1)] as u16 != inst & 0xFF {
            self.pc += 2;
        }
    }
    fn sne_rx_ry(&mut self, x: usize, y: usize) {
        if self.registers[x] != self.registers[y] {
            self.pc += 2;
        }
    }
    fn skp_r(&mut self, x: usize) {
        if self.input_state[self.registers[x] as usize] {
            self.pc += 2;
        }
    }
    fn sknp_r(&mut self, x: usize) {
        if !self.input_state[self.registers[x] as usize] {
            self.pc += 2;
        }
    }
    fn ld_r_kp(&mut self, r: usize) {
        match self.last_key_released {
            Some(i) => self.registers[r] = i as u8,
            // Sneaky hack - in order to "wait" we just decrement PC so that we reach this addr again
            // In retrospect this probably isn't that sneaky
            None => self.pc -= 2,
        }
    }
    fn ld_i(&mut self, addr: u16) {
        self.i = addr;
    }
    fn load_from_i(&mut self, n: usize) {
        for j in 0..(n + 1) {
            self.registers[j as usize] = self.mem[(self.i + j as u16) as usize];
        }
        self.i += (n + 1) as u16;
    }
    fn store_at_i(&mut self, n: usize) {
        for j in 0..(n + 1) {
            self.mem[(self.i + j as u16) as usize] = self.registers[j as usize];
        }
        self.i += (n + 1) as u16;
    }
    fn add_i_r(&mut self, r: usize) {
        self.i = self.i.wrapping_add(self.registers[r] as u16);
    }
    fn add_r_kk(&mut self, r: usize, kk: u8) {
        self.registers[r] = self.registers[r].wrapping_add(kk);
    }
    fn rand(&mut self, r: usize, mask: u16) {
        self.registers[r] = (rand::thread_rng().gen_range(0..0xFF) & mask) as u8;
    }
    fn ld_st_r(&mut self, r: usize) {
        self.st = self.registers[r];
    }
    fn ld_dt_r(&mut self, x: usize) {
        self.dt = self.registers[x];
    }
    fn ld_r_dt(&mut self, x: usize) {
        self.registers[x] = self.dt;
    }
    fn draw(&mut self, rx: usize, ry: usize, n: usize) {
        self.registers[0xF] = 0;
        let x = self.registers[rx];
        let y = self.registers[ry];
        // XOR data onto screen
        for j in 0..n {
            let mut val = self.mem[self.i as usize + j];
            for k in 0..8 {
                let coord: usize = ((y as usize + j) % SCREEN_HEIGHT) * SCREEN_WIDTH
                    + (x as usize + k) % SCREEN_WIDTH;
                let p = (val & 0x80) != 0; // Get MSB
                if p && self.screen_buffer[coord] {
                    self.registers[0xF] = 1;
                }
                self.screen_buffer[coord] = p ^ self.screen_buffer[coord];
                val = val << 1;
            }
        }
    }
    // Only loads the sprite for the LSByte of Vr
    fn ld_i_spr_x(&mut self, r: usize) {
        // 6 because that's the length of each sprite
        // 5 + 1 buffer row
        self.i = (self.registers[r] as u16 & 0xF) * 0x6;
    }
    fn ld_bcd_r(&mut self, r: usize) {
        self.mem[self.i as usize] = self.registers[r] / 100;
        self.mem[self.i as usize + 1] = (self.registers[r] / 10) % 10;
        self.mem[self.i as usize + 2] = self.registers[r] % 10;
    }

    /// Get the value of an R register
    pub fn get_register_value(&self, register: u8) -> u8 {
        return self.registers[register as usize];
    }
    /// Get the value of the program counter
    pub fn get_program_counter(&self) -> usize {
        return self.pc;
    }
    /// Get the value of the I register
    pub fn get_i(&self) -> u16 {
        return self.i;
    }
    /// Get a single byte of memory at the address given
    pub fn get_mem_at(&self, addr: usize) -> u8 {
        return self.mem[addr];
    }
    /**
     * Get a pixel at the given `x, y` position on the screen.
     * Accounts for screen wrapping.
     */
    pub fn get_pixel_at(&self, x: u8, y: u8) -> bool {
        return self.screen_buffer
            [((x as usize % 64) + y as usize * 64) % self.screen_buffer.len()];
    }
    /**
     * Return whether the processor has the `i` key currently being pressed.
     * This should be set by calls to `update_inputs`.
     */
    pub fn get_input_state(&self, i: usize) -> bool {
        return self.input_state[i];
    }
    /// Get the D timer register.
    pub fn get_dt(&self) -> u8 {
        return self.dt;
    }
    /// Get the S (sound) time register.
    pub fn get_st(&self) -> u8 {
        return self.st;
    }
    /**
     * Method that should be called by an interface whenever a key (0-F) is released.
     */
    pub fn on_key_release(&mut self, kp: u8) {
        self.last_key_released = Some(kp);
    }
}

// Get index of the register given the instruction
// and the position of the byte from the left in the instruction
// i.e. inst = 0xABCD, pos = 3, res = 0x000C
fn reg_at(inst: u16, pos: u8) -> usize {
    return ((inst >> (12 - pos * 4)) & 0x000F) as usize;
}