1use crate::default::Default;
6use crate::math::Trans;
7use crate::vector::ops::*;
8use crate::vector::Vector;
9use num_complex::{Complex32, Complex64};
10use std::ops::{Add, Mul};
11
12impl<'a, T> Add for &'a dyn Vector<T>
13where
14 T: Axpy + Copy + Default,
15{
16 type Output = Vec<T>;
17
18 fn add(self, x: &dyn Vector<T>) -> Vec<T> {
19 let mut result: Vec<_> = self.into();
20 let scale = Default::one();
21
22 Axpy::axpy(&scale, x, &mut result);
23 result
24 }
25}
26
27impl<'a, T> Mul<&'a dyn Vector<T>> for Trans<&'a dyn Vector<T>>
28where
29 T: Sized + Copy + Dot + Dotc,
30{
31 type Output = T;
32
33 fn mul(self, x: &dyn Vector<T>) -> T {
34 match self {
35 Trans::T(v) => Dot::dot(v, x),
36 Trans::H(v) => Dotc::dotc(v, x),
37 }
38 }
39}
40
41impl<'a, T> Mul<T> for &'a dyn Vector<T>
42where
43 T: Sized + Copy + Scal,
44{
45 type Output = Vec<T>;
46
47 fn mul(self, alpha: T) -> Vec<T> {
48 let mut result: Vec<_> = self.into();
49 Scal::scal(&alpha, &mut result);
50 result
51 }
52}
53
54macro_rules! left_scale(($($t: ident), +) => (
55 $(
56 impl<'a> Mul<&'a dyn Vector<$t>> for $t
57 {
58 type Output = Vec<$t>;
59
60 fn mul(self, x: &dyn Vector<$t>) -> Vec<$t> {
61 let mut result: Vec<_> = x.into();
62 Scal::scal(&self, &mut result);
63 result
64 }
65 }
66 )+
67));
68
69left_scale!(f32, f64, Complex32, Complex64);
70
71#[cfg(test)]
72mod tests {
73 use crate::math::Marker::{H, T};
74 use crate::Vector;
75 use num_complex::Complex;
76
77 #[test]
78 fn add() {
79 let x = vec![1f32, 2f32];
80 let y = vec![3f32, 4f32];
81
82 let z = (&x as &dyn Vector<_>) + &y;
83
84 assert_eq!(&z, &vec![4f32, 6f32]);
85 }
86
87 #[test]
88 fn dot() {
89 let x = vec![1f32, 2f32];
90 let y = vec![-1f32, 2f32];
91
92 let dot = {
93 let z = &x as &dyn Vector<_>;
94 (z ^ T) * &y
95 };
96
97 assert_eq!(dot, 3.0);
98 }
99
100 #[test]
101 fn herm_dot() {
102 let x = vec![Complex::new(1f32, -1f32), Complex::new(1f32, -3f32)];
103 let y = vec![Complex::new(1f32, 2f32), Complex::new(1f32, 3f32)];
104
105 let dot = {
106 let z = &x as &dyn Vector<_>;
107 (z ^ H) * &y
108 };
109
110 assert_eq!(dot, Complex::new(-9f32, 9f32));
111 }
112
113 #[test]
114 fn scale() {
115 let x = vec![1f32, 2f32];
116 let xr = &x as &dyn Vector<_>;
117
118 let y = xr * 3.0;
119 let z = 3.0 * xr;
120 assert_eq!(y, vec![3f32, 6f32]);
121 assert_eq!(z, y);
122 }
123}