Expand description
§T5 (Text-To-Text Transfer Transformer)
Implementation of the T5 language model (Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, Liu, 2019).
The base model is implemented in the t5_model::T5Model
struct. This model includes a language model head: t5_model::T5ForConditionalGeneration
implementing the common generation_utils::LanguageGenerator
trait shared between the models used for generation (see pipelines
for more information).
§Model set-up and pre-trained weights loading
A full working example (summarization) is provided in examples/summarization_t5
, run with cargo run --example summarization_t5
.
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. T5Tokenizer
using aspiece.model
sentence piece model
Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::t5::{T5Config, T5ForConditionalGeneration};
use rust_bert::Config;
use rust_tokenizers::tokenizer::T5Tokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let sentence_piece_resource = LocalResource {
local_path: PathBuf::from("path/to/spiece.model"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let spiece_path = sentence_piece_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer = T5Tokenizer::from_file(spiece_path.to_str().unwrap(), true);
let config = T5Config::from_file(config_path);
let t5_model = T5ForConditionalGeneration::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- Layer
State - Cache for T5 attention layers
- T5Config
- T5 model configuration
- T5Config
Resources - T5 Pretrained model config files
- T5For
Conditional Generation - T5 Model for conditional generation
- T5For
Sentence Embeddings - T5 for sentence embeddings
- T5Generator
- T5Model
- T5 Base model
- T5Model
Output - Container holding a T5 model output. The decoder output may hold the hidden state of the last layer of the decoder, or may hold logits for a custom head module after the decoder (e.g. for language modeling tasks)
- T5Model
Resources - T5 Pretrained model weight files
- T5Prefix
- T5 optional prefixes
- T5Source
Languages - T5 source languages pre-sets
- T5Vocab
Resources - T5 Pretrained model vocab files
Type Aliases§
- T5Target
Languages - T5 target languages pre-sets