Expand description
§MobileBERT (A Compact Task-agnostic BERT for Resource-Limited Devices)
Implementation of the MobileBERT language model (MobileBERT: A Compact Task-agnostic BERT for Resource-Limited Devices Sun, Yu, Song, Liu, Yang, Zhou, 2020).
The base model is implemented in the mobilebert_model::MobileBertModel
struct. Several language model heads have also been implemented, including:
- Multiple choices:
mobilebert_model:MobileBertForMultipleChoice
- Question answering:
mobilebert_model::MobileBertForQuestionAnswering
- Sequence classification:
mobilebert_model::MobileBertForSequenceClassification
- Token classification (e.g. NER, POS tagging):
mobilebert_model::MobileBertForTokenClassification
.
§Model set-up and pre-trained weights loading
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.bin
weights to the.ot
format. BertTokenizer
using avocab.txt
vocabulary
Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::mobilebert::{
MobileBertConfig, MobileBertConfigResources, MobileBertForMaskedLM,
MobileBertModelResources, MobileBertVocabResources,
};
use rust_bert::resources::{RemoteResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::BertTokenizer;
let config_resource =
RemoteResource::from_pretrained(MobileBertConfigResources::MOBILEBERT_UNCASED);
let vocab_resource =
RemoteResource::from_pretrained(MobileBertVocabResources::MOBILEBERT_UNCASED);
let weights_resource =
RemoteResource::from_pretrained(MobileBertModelResources::MOBILEBERT_UNCASED);
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: BertTokenizer =
BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?;
let config = MobileBertConfig::from_file(config_path);
let bert_model = MobileBertForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- Mobile
Bert Config - MobileBERT model configuration
- Mobile
Bert Config Resources - MobileBERT Pretrained model config files
- Mobile
Bert ForMaskedLM - MobileBERT for masked language model
- Mobile
Bert ForMultiple Choice - MobileBERT for multiple choices
- Mobile
Bert ForQuestion Answering - MobileBERT for question answering
- Mobile
Bert ForSequence Classification - MobileBERT for sequence classification
- Mobile
Bert ForToken Classification - MobileBERT for token classification (e.g. NER, POS)
- Mobile
Bert Model - MobileBertModel Base model
- Mobile
Bert Model Resources - MobileBERT Pretrained model weight files
- Mobile
Bert Vocab Resources - MobileBERT Pretrained model vocab files
- NoNorm
- No-normalization option for MobileBERT
Enums§
- Normalization
Type - Normalization type to use for the MobileBERT model.