Expand description
§Electra: Pre-training Text Encoders as Discriminators Rather Than Generators (Clark et al.)
Implementation of the Electra language model (https://openreview.net/pdf?id=r1xMH1BtvB Clark, Luong, Le, Manning, 2020).
The base model is implemented in the electra_model::ElectraModel struct. Both generator and discriminator are available via specialized heads:
- Generator head:
electra_model::ElectraGeneratorHead - Discriminator head:
electra_model::ElectraDiscriminatorHead
The generator and discriminator models are built from these:
- Generator (masked language model):
electra_model::ElectraForMaskedLM - Discriminator:
electra_model::ElectraDiscriminator
An additional sequence token classification model is available for reference
- Token classification (e.g. NER, POS tagging):
electra_model::ElectraForTokenClassification
§Model set-up and pre-trained weights loading
The example below illustrate a Masked language model example, the structure is similar for other models (e.g. discriminator). All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.binweights to the.otformat. BertTokenizerusing avocab.txtvocabulary
Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::electra::{ElectraConfig, ElectraForMaskedLM};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::BertTokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: BertTokenizer =
BertTokenizer::from_file(vocab_path.to_str().unwrap(), true, true)?;
let config = ElectraConfig::from_file(config_path);
let electra_model = ElectraForMaskedLM::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs§
- Electra
Config - Electra model configuration
- Electra
Config Resources - Electra Pretrained model config files
- Electra
Discriminator - Electra Discriminator
- Electra
Discriminator Head - Electra Discriminator head
- Electra
Discriminator Output - Container for the Electra discriminator model output.
- Electra
ForMaskedLM - Electra for Masked Language Modeling
- Electra
ForToken Classification - Electra for token classification (e.g. POS, NER)
- Electra
Generator Head - Electra Generator head
- Electra
MaskedLM Output - Container for the Electra masked LM model output.
- Electra
Model - Electra Base model
- Electra
Model Output - Container for the Electra model output.
- Electra
Model Resources - Electra Pretrained model weight files
- Electra
Token Classification Output - Container for the Electra token classification model output.
- Electra
Vocab Resources - Electra Pretrained model vocab files