1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
//! # BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin et al.) //! //! Implementation of the BERT language model ([https://arxiv.org/abs/1810.04805](https://arxiv.org/abs/1810.04805) Devlin, Chang, Lee, Toutanova, 2018). //! The base model is implemented in the `bert::BertModel` struct. Several language model heads have also been implemented, including: //! - Masked language model: `bert::BertForMaskedLM` //! - Multiple choices: `bert:BertForMultipleChoice` //! - Question answering: `bert::BertForQuestionAnswering` //! - Sequence classification: `bert::BertForSequenceClassification` //! - Token classification (e.g. NER, POS tagging): `bert::BertForTokenClassification` //! //! # Model set-up and pre-trained weights loading //! //! A full working example is provided in `examples/bert.rs`, run with `cargo run --example bert`. //! The example below illustrate a Masked language model example, the structure is similar for other models. //! All models expect the following resources: //! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers) //! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format. //! - `BertTokenizer` using a `vocab.txt` vocabulary //! Pretrained models are available and can be downloaded using RemoteResources. //! //! ```no_run //! # fn main() -> anyhow::Result<()> { //! # //! use rust_tokenizers::BertTokenizer; //! use tch::{nn, Device}; //! # use std::path::PathBuf; //! use rust_bert::bert::{BertConfig, BertForMaskedLM}; //! use rust_bert::resources::{download_resource, LocalResource, Resource}; //! use rust_bert::Config; //! //! let config_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/config.json"), //! }); //! let vocab_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let weights_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/model.ot"), //! }); //! let config_path = download_resource(&config_resource)?; //! let vocab_path = download_resource(&vocab_resource)?; //! let weights_path = download_resource(&weights_resource)?; //! let device = Device::cuda_if_available(); //! let mut vs = nn::VarStore::new(device); //! let tokenizer: BertTokenizer = BertTokenizer::from_file(vocab_path.to_str().unwrap(), true)?; //! let config = BertConfig::from_file(config_path); //! let bert_model = BertForMaskedLM::new(&vs.root(), &config); //! vs.load(weights_path)?; //! //! # Ok(()) //! # } //! ``` mod attention; mod bert; mod embeddings; pub(crate) mod encoder; pub use bert::{ Activation, BertConfig, BertConfigResources, BertForMaskedLM, BertForMultipleChoice, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertModel, BertModelResources, BertVocabResources, }; pub use embeddings::{BertEmbedding, BertEmbeddings};