1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019-2020 Guillaume Becquin // Copyright 2020 Maarten van Gompel // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Sequence classification pipeline (e.g. Sentiment Analysis) //! More generic sequence classification pipeline, works with multiple models (Bert, Roberta) //! //! ```no_run //! use rust_bert::pipelines::sequence_classification::SequenceClassificationConfig; //! use rust_bert::resources::{RemoteResource, Resource}; //! use rust_bert::distilbert::{DistilBertModelResources, DistilBertVocabResources, DistilBertConfigResources}; //! use rust_bert::pipelines::sequence_classification::SequenceClassificationModel; //! use rust_bert::pipelines::common::ModelType; //!# fn main() -> failure::Fallible<()> { //! //! //Load a configuration //! let config = SequenceClassificationConfig::new(ModelType::DistilBert, //! Resource::Remote(RemoteResource::from_pretrained(DistilBertModelResources::DISTIL_BERT_SST2)), //! Resource::Remote(RemoteResource::from_pretrained(DistilBertVocabResources::DISTIL_BERT_SST2)), //! Resource::Remote(RemoteResource::from_pretrained(DistilBertConfigResources::DISTIL_BERT_SST2)), //! None, //merges resource only relevant with ModelType::Roberta //! true, //lowercase //! ); //! //! //Create the model //! let sequence_classification_model = SequenceClassificationModel::new(config)?; //! //! let input = [ //! "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.", //! "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...", //! "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.", //! ]; //! let output = sequence_classification_model.predict(&input); //!# Ok(()) //!# } //! ``` //! (Example courtesy of [IMDb](http://www.imdb.com)) //! //! Output: \ //! ```no_run //!# use rust_bert::pipelines::sequence_classification::Label; //! let output = //! [ //! Label { text: String::from("POSITIVE"), score: 0.9986, id: 1, sentence: 0}, //! Label { text: String::from("NEGATIVE"), score: 0.9985, id: 0, sentence: 1}, //! Label { text: String::from("POSITIVE"), score: 0.9988, id: 1, sentence: 12}, //! ] //!# ; //! ``` //! use tch::nn::VarStore; use rust_tokenizers::preprocessing::tokenizer::base_tokenizer::{TokenizedInput, TruncationStrategy}; use std::collections::HashMap; use tch::{Tensor, no_grad, Device, Kind}; use crate::bert::BertForSequenceClassification; use crate::roberta::RobertaForSequenceClassification; use crate::distilbert::{DistilBertModelResources, DistilBertConfigResources, DistilBertVocabResources, DistilBertModelClassifier}; use crate::common::resources::{Resource, RemoteResource, download_resource}; use serde::{Serialize, Deserialize}; use crate::pipelines::common::{ModelType, ConfigOption, TokenizerOption}; #[derive(Debug, Serialize, Deserialize)] /// # Label generated by a `SequenceClassificationModel` pub struct Label { /// Label String representation pub text: String, /// Confidence score pub score: f64, /// Label ID pub id: i64, /// Sentence index #[serde(default)] pub sentence: usize, } /// # Configuration for SequenceClassificationModel /// Contains information regarding the model to load and device to place the model on. pub struct SequenceClassificationConfig { /// Model type pub model_type: ModelType, /// Model weights resource (default: pretrained BERT model on CoNLL) pub model_resource: Resource, /// Config resource (default: pretrained BERT model on CoNLL) pub config_resource: Resource, /// Vocab resource (default: pretrained BERT model on CoNLL) pub vocab_resource: Resource, /// Merges resource (default: pretrained BERT model on CoNLL) pub merges_resource: Option<Resource>, /// Automatically lower case all input upon tokenization (assumes a lower-cased model) pub lower_case: bool, /// Device to place the model on (default: CUDA/GPU when available) pub device: Device, } impl SequenceClassificationConfig { /// Instantiate a new sequence classification configuration of the supplied type. /// /// # Arguments /// /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded!) /// * model - The `Resource` pointing to the model to load (e.g. model.ot) /// * config - The `Resource' pointing to the model configuration to load (e.g. config.json) /// * vocab - The `Resource' pointing to the tokenizer's vocabulary to load (e.g. vocab.txt/vocab.json) /// * vocab - An optional `Resource` tuple (`Option<Resource>`) pointing to the tokenizer's merge file to load (e.g. merges.txt), needed only for Roberta. /// * lower_case - A `bool' indicating whether the tokeniser should lower case all input (in case of a lower-cased model) /// pub fn new(model_type: ModelType, model_resource: Resource, config_resource: Resource, vocab_resource: Resource, merges_resource: Option<Resource>, lower_case: bool) -> SequenceClassificationConfig { SequenceClassificationConfig { model_type, model_resource, config_resource, vocab_resource, merges_resource, lower_case, device: Device::cuda_if_available(), } } } impl Default for SequenceClassificationConfig { /// Provides a defaultSST-2 sentiment analysis model (English) fn default() -> SequenceClassificationConfig { SequenceClassificationConfig { model_type: ModelType::DistilBert, model_resource: Resource::Remote(RemoteResource::from_pretrained(DistilBertModelResources::DISTIL_BERT_SST2)), config_resource: Resource::Remote(RemoteResource::from_pretrained(DistilBertConfigResources::DISTIL_BERT_SST2)), vocab_resource: Resource::Remote(RemoteResource::from_pretrained(DistilBertVocabResources::DISTIL_BERT_SST2)), merges_resource: None, lower_case: true, device: Device::cuda_if_available(), } } } /// # Abstraction that holds one particular token sequence classifier model, for any of the supported models pub enum SequenceClassificationOption { /// Bert for Sequence Classification Bert(BertForSequenceClassification), /// DistilBert for Sequence Classification DistilBert(DistilBertModelClassifier), /// Roberta for Sequence Classification Roberta(RobertaForSequenceClassification), } impl SequenceClassificationOption { /// Instantiate a new sequence classification model of the supplied type. /// /// # Arguments /// /// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded) /// * `p` - `tch::nn::Path` path to the model file to load (e.g. model.ot) /// * `config` - A configuration (the model type of the configuration must be compatible with the value for /// `model_type`) /// pub fn new(model_type: ModelType, p: &tch::nn::Path, config: &ConfigOption) -> Self { match model_type { ModelType::Bert => { if let ConfigOption::Bert(config) = config { SequenceClassificationOption::Bert(BertForSequenceClassification::new(p, config)) } else { panic!("You can only supply a BertConfig for Bert!"); } } ModelType::DistilBert => { if let ConfigOption::DistilBert(config) = config { SequenceClassificationOption::DistilBert(DistilBertModelClassifier::new(p, config)) } else { panic!("You can only supply a DistilBertConfig for DistilBert!"); } } ModelType::Roberta => { if let ConfigOption::Bert(config) = config { SequenceClassificationOption::Roberta(RobertaForSequenceClassification::new(p, config)) } else { panic!("You can only supply a BertConfig for Roberta!"); } } ModelType::Electra => { panic!("SequenceClassification not implemented for Electra!"); } } } /// Returns the `ModelType` for this SequenceClassificationOption pub fn model_type(&self) -> ModelType { match *self { Self::Bert(_) => ModelType::Bert, Self::Roberta(_) => ModelType::Roberta, Self::DistilBert(_) => ModelType::DistilBert } } /// Interface method to forward_t() of the particular models. pub fn forward_t(&self, input_ids: Option<Tensor>, mask: Option<Tensor>, token_type_ids: Option<Tensor>, position_ids: Option<Tensor>, input_embeds: Option<Tensor>, train: bool) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>) { match *self { Self::Bert(ref model) => model.forward_t(input_ids, mask, token_type_ids, position_ids, input_embeds, train), Self::DistilBert(ref model) => model.forward_t(input_ids, mask, input_embeds, train).expect("Error in distilbert forward_t"), Self::Roberta(ref model) => model.forward_t(input_ids, mask, token_type_ids, position_ids, input_embeds, train), } } } /// # SequenceClassificationModel for Classification (e.g. Sentiment Analysis) pub struct SequenceClassificationModel { tokenizer: TokenizerOption, sequence_classifier: SequenceClassificationOption, label_mapping: HashMap<i64, String>, var_store: VarStore, } impl SequenceClassificationModel { /// Build a new `SequenceClassificationModel` /// /// # Arguments /// /// * `config` - `SequenceClassificationConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run ///# fn main() -> failure::Fallible<()> { /// use rust_bert::pipelines::sequence_classification::SequenceClassificationModel; /// /// let model = SequenceClassificationModel::new(Default::default())?; ///# Ok(()) ///# } /// ``` /// pub fn new(config: SequenceClassificationConfig) -> failure::Fallible<SequenceClassificationModel> { let config_path = download_resource(&config.config_resource)?; let vocab_path = download_resource(&config.vocab_resource)?; let weights_path = download_resource(&config.model_resource)?; let merges_path = if let Some(merges_resource) = &config.merges_resource { Some(download_resource(merges_resource).expect("Failure downloading resource")) } else { None }; let device = config.device; let tokenizer = TokenizerOption::from_file(config.model_type, vocab_path.to_str().unwrap(), merges_path.map(|path| path.to_str().unwrap()), config.lower_case); let mut var_store = VarStore::new(device); let model_config = ConfigOption::from_file(config.model_type, config_path); let sequence_classifier = SequenceClassificationOption::new(config.model_type, &var_store.root(), &model_config); let label_mapping = model_config.get_label_mapping(); var_store.load(weights_path)?; Ok(SequenceClassificationModel { tokenizer, sequence_classifier, label_mapping, var_store }) } fn prepare_for_model(&self, input: Vec<&str>) -> Tensor { let tokenized_input: Vec<TokenizedInput> = self.tokenizer.encode_list(input.to_vec(), 128, &TruncationStrategy::LongestFirst, 0); let max_len = tokenized_input.iter().map(|input| input.token_ids.len()).max().unwrap(); let tokenized_input_tensors: Vec<tch::Tensor> = tokenized_input. iter(). map(|input| input.token_ids.clone()). map(|mut input| { input.extend(vec![0; max_len - input.len()]); input }). map(|input| Tensor::of_slice(&(input))). collect::<Vec<_>>(); Tensor::stack(tokenized_input_tensors.as_slice(), 0).to(self.var_store.device()) } /// Classify texts /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to classify. /// /// # Returns /// /// * `Vec<Label>` containing labels for input texts /// /// # Example /// /// ```no_run ///# fn main() -> failure::Fallible<()> { ///# use rust_bert::pipelines::sequence_classification::SequenceClassificationModel; /// /// let sequence_classification_model = SequenceClassificationModel::new(Default::default())?; /// let input = [ /// "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.", /// "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...", /// "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.", /// ]; /// let output = sequence_classification_model.predict(&input); ///# Ok(()) ///# } /// ``` pub fn predict(&self, input: &[&str]) -> Vec<Label> { let input_tensor = self.prepare_for_model(input.to_vec()); let output = no_grad(|| { let (output, _, _) = self.sequence_classifier .forward_t(Some(input_tensor.copy()), None, None, None, None, false); output.softmax(-1, Kind::Float).detach().to(Device::Cpu) }); let label_indices = output.as_ref().argmax(-1, true).squeeze(); let scores = output.gather(1, &label_indices.unsqueeze(1), false).squeeze(); let label_indices = label_indices.iter::<i64>().unwrap().collect::<Vec<i64>>(); let scores = scores.iter::<f64>().unwrap().collect::<Vec<f64>>(); let mut labels: Vec<Label> = vec!(); for sentence_idx in 0..label_indices.len() { let label_string = self.label_mapping.get(&label_indices[sentence_idx]).unwrap().clone(); let label = Label { text: label_string, score: scores[sentence_idx], id: label_indices[sentence_idx], sentence: sentence_idx, }; labels.push(label) } labels } /// Multi-label classification of texts /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to classify. /// * `threshold` - `f64` threshold above which a label will be considered true by the classifier /// /// # Returns /// /// * `Vec<Vec<Label>>` containing a vector of true labels for each input text /// /// # Example /// /// ```no_run ///# fn main() -> failure::Fallible<()> { ///# use rust_bert::pipelines::sequence_classification::SequenceClassificationModel; /// /// let sequence_classification_model = SequenceClassificationModel::new(Default::default())?; /// let input = [ /// "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.", /// "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...", /// "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.", /// ]; /// let output = sequence_classification_model.predict_multilabel(&input, 0.5); ///# Ok(()) ///# } /// ``` pub fn predict_multilabel(&self, input: &[&str], threshold: f64) -> Vec<Vec<Label>> { let input_tensor = self.prepare_for_model(input.to_vec()); let output = no_grad(|| { let (output, _, _) = self.sequence_classifier .forward_t(Some(input_tensor.copy()), None, None, None, None, false); output.sigmoid().detach().to(Device::Cpu) }); let label_indices = output.as_ref().ge(threshold).nonzero(); let mut labels: Vec<Vec<Label>> = vec!(); let mut sequence_labels: Vec<Label> = vec!(); for sentence_idx in 0..label_indices.size()[0] { let label_index_tensor = label_indices.get(sentence_idx); let sentence_label = label_index_tensor.iter::<i64>().unwrap().collect::<Vec<i64>>(); let (sentence, id) = (sentence_label[0], sentence_label[1]); if sentence as usize > labels.len() { labels.push(sequence_labels); sequence_labels = vec!(); } let score = output.double_value(sentence_label.as_slice()); let label_string = self.label_mapping.get(&id).unwrap().to_owned(); let label = Label { text: label_string, score, id, sentence: sentence as usize, }; sequence_labels.push(label); } if sequence_labels.len() > 0 { labels.push(sequence_labels); } labels } }