1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Named Entity Recognition pipeline
//! Extracts entities (Person, Location, Organization, Miscellaneous) from text.
//! BERT cased large model finetuned on CoNNL03, contributed by the [MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz)
//! All resources for this model can be downloaded using the Python utility script included in this repository.
//! 1. Set-up a Python virtual environment and install dependencies (in ./requirements.txt)
//! 2. Run the conversion script python /utils/download-dependencies_bert_ner.py.
//! The dependencies will be downloaded to the user's home directory, under ~/rustbert/bert-ner
//!
//! ```no_run
//! use rust_bert::pipelines::ner::NERModel;
//!# fn main() -> failure::Fallible<()> {
//! let ner_model = NERModel::new(Default::default())?;
//!
//! let input = [
//!     "My name is Amy. I live in Paris.",
//!     "Paris is a city in France."
//! ];
//! let output = ner_model.predict(&input);
//!# Ok(())
//!# }
//! ```
//! Output: \
//! ```no_run
//!# use rust_bert::pipelines::question_answering::Answer;
//!# use rust_bert::pipelines::ner::Entity;
//!# let output =
//! [
//!    Entity { word: String::from("Amy"), score: 0.9986, label: String::from("I-PER") },
//!    Entity { word: String::from("Paris"), score: 0.9985, label: String::from("I-LOC") },
//!    Entity { word: String::from("Paris"), score: 0.9988, label: String::from("I-LOC") },
//!    Entity { word: String::from("France"), score: 0.9993, label: String::from("I-LOC") },
//! ]
//!# ;
//! ```

use crate::pipelines::token_classification::{TokenClassificationModel, TokenClassificationConfig};


#[derive(Debug)]
/// # Entity generated by a `NERModel`
pub struct Entity {
    /// String representation of the Entity
    pub word: String,
    /// Confidence score
    pub score: f64,
    /// Entity label (e.g. ORG, LOC...)
    pub label: String,
}

//type alias for some backward compatibility
type NERConfig = TokenClassificationConfig;

/// # NERModel to extract named entities
pub struct NERModel {
    token_classification_model: TokenClassificationModel
}

impl NERModel {
    /// Build a new `NERModel`
    ///
    /// # Arguments
    ///
    /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# fn main() -> failure::Fallible<()> {
    /// use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model =  NERModel::new(Default::default())?;
    ///# Ok(())
    ///# }
    /// ```
    ///
    pub fn new(ner_config: NERConfig) -> failure::Fallible<NERModel> {
        let model = TokenClassificationModel::new(ner_config)?;
        Ok(NERModel { token_classification_model: model })
    }

    /// Extract entities from a text
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to extract entities from.
    ///
    /// # Returns
    ///
    /// * `Vec<Entity>` containing extracted entities
    ///
    /// # Example
    ///
    /// ```no_run
    ///# fn main() -> failure::Fallible<()> {
    ///# use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model =  NERModel::new(Default::default())?;
    /// let input = [
    ///     "My name is Amy. I live in Paris.",
    ///     "Paris is a city in France."
    /// ];
    /// let output = ner_model.predict(&input);
    ///# Ok(())
    ///# }
    /// ```
    ///
    pub fn predict(&self, input: &[&str]) -> Vec<Entity> {
        self.token_classification_model
            .predict(input, true, false)
            .into_iter()
            .filter(|token| token.label != "O")
            .map(|token| {
                Entity {
                    word: token.text,
                    score: token.score,
                    label: token.label,
                }
            }).collect()
    }
}