1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use tch::{nn, Tensor, Kind}; use tch::nn::{EmbeddingConfig, embedding}; use crate::common::dropout::Dropout; use crate::bert::bert::BertConfig; /// # BertEmbedding trait (for use in BertModel or RoBERTaModel) /// Defines an interface for the embedding layers in BERT-based models pub trait BertEmbedding { fn new(p: &nn::Path, config: &BertConfig) -> Self; fn forward_t(&self, input_ids: Option<Tensor>, token_type_ids: Option<Tensor>, position_ids: Option<Tensor>, input_embeds: Option<Tensor>, train: bool) -> Result<Tensor, &'static str>; } #[derive(Debug)] /// # BertEmbeddings implementation for BERT model /// Implementation of the `BertEmbedding` trait for BERT models pub struct BertEmbeddings { word_embeddings: nn::Embedding, position_embeddings: nn::Embedding, token_type_embeddings: nn::Embedding, layer_norm: nn::LayerNorm, dropout: Dropout, } impl BertEmbedding for BertEmbeddings { /// Build a new `BertEmbeddings` /// /// # Arguments /// /// * `p` - Variable store path for the root of the BertEmbeddings model /// * `config` - `BertConfig` object defining the model architecture and vocab/hidden size /// /// # Example /// /// ```no_run /// use rust_bert::bert::{BertConfig, BertEmbeddings, BertEmbedding}; /// use tch::{nn, Device}; /// use rust_bert::Config; /// use std::path::Path; /// /// let config_path = Path::new("path/to/config.json"); /// let device = Device::Cpu; /// let p = nn::VarStore::new(device); /// let config = BertConfig::from_file(config_path); /// let bert_embeddings = BertEmbeddings::new(&(&p.root() / "bert_embeddings"), &config); /// ``` /// fn new(p: &nn::Path, config: &BertConfig) -> BertEmbeddings { let embedding_config = EmbeddingConfig { padding_idx: 0, ..Default::default() }; let word_embeddings: nn::Embedding = embedding(p / "word_embeddings", config.vocab_size, config.hidden_size, embedding_config); let position_embeddings: nn::Embedding = embedding(p / "position_embeddings", config.max_position_embeddings, config.hidden_size, Default::default()); let token_type_embeddings: nn::Embedding = embedding(p / "token_type_embeddings", config.type_vocab_size, config.hidden_size, Default::default()); let layer_norm_config = nn::LayerNormConfig { eps: 1e-12, ..Default::default() }; let layer_norm: nn::LayerNorm = nn::layer_norm(p / "LayerNorm", vec![config.hidden_size], layer_norm_config); let dropout: Dropout = Dropout::new(config.hidden_dropout_prob); BertEmbeddings { word_embeddings, position_embeddings, token_type_embeddings, layer_norm, dropout } } /// Forward pass through the embedding layer /// /// # Arguments /// /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see *input_embeds*) /// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0. /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0. /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see *input_ids*) /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference. /// /// # Returns /// /// * `embedded_output` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*) /// /// # Example /// /// ```no_run ///# use rust_bert::bert::{BertConfig, BertEmbeddings, BertEmbedding}; ///# use tch::{nn, Device, Tensor, no_grad}; ///# use rust_bert::Config; ///# use std::path::Path; ///# use tch::kind::Kind::Int64; ///# let config_path = Path::new("path/to/config.json"); ///# let vocab_path = Path::new("path/to/vocab.txt"); ///# let device = Device::Cpu; ///# let vs = nn::VarStore::new(device); ///# let config = BertConfig::from_file(config_path); ///# let bert_embeddings = BertEmbeddings::new(&vs.root(), &config); /// let (batch_size, sequence_length) = (64, 128); /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device)); /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); /// let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true); /// /// let embedded_output = no_grad(|| { /// bert_embeddings /// .forward_t(Some(input_tensor), /// Some(token_type_ids), /// Some(position_ids), /// None, /// false).unwrap() /// }); /// ``` /// fn forward_t(&self, input_ids: Option<Tensor>, token_type_ids: Option<Tensor>, position_ids: Option<Tensor>, input_embeds: Option<Tensor>, train: bool) -> Result<Tensor, &'static str> { let (input_embeddings, input_shape) = match input_ids { Some(input_value) => match input_embeds { Some(_) => { return Err("Only one of input ids or input embeddings may be set"); } None => (input_value.apply_t(&self.word_embeddings, train), input_value.size()) } None => match input_embeds { Some(embeds) => (embeds.copy(), vec!(embeds.size()[0], embeds.size()[1])), None => { return Err("Only one of input ids or input embeddings may be set"); } } }; let seq_length = input_embeddings.as_ref().size()[1].to_owned(); let position_ids = match position_ids { Some(value) => value, None => Tensor::arange(seq_length, (Kind::Int64, input_embeddings.device())) .unsqueeze(0). expand(&input_shape, true) }; let token_type_ids = match token_type_ids { Some(value) => value, None => Tensor::zeros(&input_shape, (Kind::Int64, input_embeddings.device())) }; let position_embeddings = position_ids.apply(&self.position_embeddings); let token_type_embeddings = token_type_ids.apply(&self.token_type_embeddings); let input_embeddings: Tensor = input_embeddings + position_embeddings + token_type_embeddings; Ok(input_embeddings.apply(&self.layer_norm).apply_t(&self.dropout, train)) } }