1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use serde::{Deserialize, Serialize};
use crate::bert::embeddings::{BertEmbeddings, BertEmbedding};
use crate::bert::encoder::{BertEncoder, BertPooler};
use tch::{nn, Tensor, Kind};
use tch::kind::Kind::Float;
use crate::common::activations::{_gelu, _relu, _mish};
use crate::common::linear::{LinearNoBias, linear_no_bias};
use tch::nn::Init;
use crate::common::dropout::Dropout;
use std::collections::HashMap;
use crate::Config;

/// # BERT Pretrained model weight files
pub struct BertModelResources;

/// # BERT Pretrained model config files
pub struct BertConfigResources;

/// # BERT Pretrained model vocab files
pub struct BertVocabResources;

impl BertModelResources {
    /// Shared under Apache 2.0 license by the Google team at https://github.com/google-research/bert. Modified with conversion to C-array format.
    pub const BERT: (&'static str, &'static str) = ("bert/model.ot", "https://cdn.huggingface.co/bert-base-uncased-rust_model.ot");
    /// Shared under MIT license by the MDZ Digital Library team at the Bavarian State Library at https://github.com/dbmdz/berts. Modified with conversion to C-array format.
    pub const BERT_NER: (&'static str, &'static str) = ("bert-ner/model.ot", "https://cdn.huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english/rust_model.ot");
}

impl BertConfigResources {
    /// Shared under Apache 2.0 license by the Google team at https://github.com/google-research/bert. Modified with conversion to C-array format.
    pub const BERT: (&'static str, &'static str) = ("bert/config.json", "https://cdn.huggingface.co/bert-base-uncased-config.json");
    /// Shared under MIT license by the MDZ Digital Library team at the Bavarian State Library at https://github.com/dbmdz/berts. Modified with conversion to C-array format.
    pub const BERT_NER: (&'static str, &'static str) = ("bert-ner/config.json", "https://cdn.huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english/config.json");
}

impl BertVocabResources {
    /// Shared under Apache 2.0 license by the Google team at https://github.com/google-research/bert. Modified with conversion to C-array format.
    pub const BERT: (&'static str, &'static str) = ("bert/vocab.txt", "https://cdn.huggingface.co/bert-base-uncased-vocab.txt");
    /// Shared under MIT license by the MDZ Digital Library team at the Bavarian State Library at https://github.com/dbmdz/berts. Modified with conversion to C-array format.
    pub const BERT_NER: (&'static str, &'static str) = ("bert-ner/vocab.txt", "https://cdn.huggingface.co/dbmdz/bert-large-cased-finetuned-conll03-english/vocab.txt");
}

#[allow(non_camel_case_types)]
#[derive(Clone, Debug, Serialize, Deserialize)]
/// # Activation function used in the attention layer and masked language model head
pub enum Activation {
    /// Gaussian Error Linear Unit ([Hendrycks et al., 2016,](https://arxiv.org/abs/1606.08415))
    gelu,
    /// Rectified Linear Unit
    relu,
    /// Mish ([Misra, 2019](https://arxiv.org/abs/1908.08681))
    mish,
}

#[derive(Debug, Serialize, Deserialize)]
/// # BERT model configuration
/// Defines the BERT model architecture (e.g. number of layers, hidden layer size, label mapping...)
pub struct BertConfig {
    pub hidden_act: Activation,
    pub attention_probs_dropout_prob: f64,
    pub hidden_dropout_prob: f64,
    pub hidden_size: i64,
    pub initializer_range: f32,
    pub intermediate_size: i64,
    pub max_position_embeddings: i64,
    pub num_attention_heads: i64,
    pub num_hidden_layers: i64,
    pub type_vocab_size: i64,
    pub vocab_size: i64,
    pub output_attentions: Option<bool>,
    pub output_hidden_states: Option<bool>,
    pub is_decoder: Option<bool>,
    pub id2label: Option<HashMap<i64, String>>,
    pub label2id: Option<HashMap<String, i64>>,
}

impl Config<BertConfig> for BertConfig {}

/// # BERT Base model
/// Base architecture for BERT models. Task-specific models will be built from this common base model
/// It is made of the following blocks:
/// - `embeddings`: `token`, `position` and `segment_id` embeddings
/// - `encoder`: Encoder (transformer) made of a vector of layers. Each layer is made of a self-attention layer, an intermediate (linear) and output (linear + layer norm) layers
/// - `pooler`: linear layer applied to the first element of the sequence (*[MASK]* token)
/// - `is_decoder`: Flag indicating if the model is used as a decoder. If set to true, a causal mask will be applied to hide future positions that should not be attended to.
pub struct BertModel<T: BertEmbedding> {
    embeddings: T,
    encoder: BertEncoder,
    pooler: BertPooler,
    is_decoder: bool,
}

/// Defines the implementation of the BertModel. The BERT model shares many similarities with RoBERTa, main difference being the embeddings.
/// Therefore the forward pass of the model is shared and the type of embedding used is abstracted away. This allows to create
/// `BertModel<RobertaEmbeddings>` or `BertModel<BertEmbeddings>` for each model type.
impl<T: BertEmbedding> BertModel<T> {
    /// Build a new `BertModel`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the BERT model
    /// * `config` - `BertConfig` object defining the model architecture and decoder status
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::bert::{BertModel, BertConfig, BertEmbeddings};
    /// use tch::{nn, Device};
    /// use rust_bert::Config;
    /// use std::path::Path;
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = BertConfig::from_file(config_path);
    /// let bert: BertModel<BertEmbeddings> = BertModel::new(&(&p.root() / "bert"), &config);
    /// ```
    ///
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertModel<T> {
        let is_decoder = match config.is_decoder {
            Some(value) => value,
            None => false
        };
        let embeddings = T::new(&(p / "embeddings"), config);
        let encoder = BertEncoder::new(&(p / "encoder"), config);
        let pooler = BertPooler::new(&(p / "pooler"), config);

        BertModel { embeddings, encoder, pooler, is_decoder }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `encoder_hidden_states` - Optional encoder hidden state of shape (*batch size*, *encoder_sequence_length*, *hidden_size*). If the model is defined as a decoder and the `encoder_hidden_states` is not None, used in the cross-attention layer as keys and values (query from the decoder).
    /// * `encoder_mask` - Optional encoder attention mask of shape (*batch size*, *encoder_sequence_length*). If the model is defined as a decoder and the `encoder_hidden_states` is not None, used to mask encoder values. Positions with value 0 will be masked.
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `output` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `pooled_output` - `Tensor` of shape (*batch size*, *hidden_size*)
    /// * `hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# use rust_bert::bert::{BertModel, BertConfig, BertEmbeddings};
    ///# use tch::{nn, Device, Tensor, no_grad};
    ///# use rust_bert::Config;
    ///# use std::path::Path;
    ///# use tch::kind::Kind::Int64;
    ///# let config_path = Path::new("path/to/config.json");
    ///# let device = Device::Cpu;
    ///# let vs = nn::VarStore::new(device);
    ///# let config = BertConfig::from_file(config_path);
    ///# let bert_model: BertModel<BertEmbeddings> = BertModel::new(&vs.root(), &config);
    ///  let (batch_size, sequence_length) = (64, 128);
    ///  let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    ///  let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);
    ///
    ///  let (output, pooled_output, all_hidden_states, all_attentions) = no_grad(|| {
    ///    bert_model
    ///         .forward_t(Some(input_tensor),
    ///                    Some(mask),
    ///                    Some(token_type_ids),
    ///                    Some(position_ids),
    ///                    None,
    ///                    &None,
    ///                    &None,
    ///                    false).unwrap()
    ///    });
    ///
    /// ```
    ///
    pub fn forward_t(&self,
                     input_ids: Option<Tensor>,
                     mask: Option<Tensor>,
                     token_type_ids: Option<Tensor>,
                     position_ids: Option<Tensor>,
                     input_embeds: Option<Tensor>,
                     encoder_hidden_states: &Option<Tensor>,
                     encoder_mask: &Option<Tensor>,
                     train: bool)
                     -> Result<(Tensor, Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>), &'static str> {
        let (input_shape, device) = match &input_ids {
            Some(input_value) => match &input_embeds {
                Some(_) => { return Err("Only one of input ids or input embeddings may be set"); }
                None => (input_value.size(), input_value.device())
            }
            None => match &input_embeds {
                Some(embeds) => (vec!(embeds.size()[0], embeds.size()[1]), embeds.device()),
                None => { return Err("At least one of input ids or input embeddings must be set"); }
            }
        };

        let mask = match mask {
            Some(value) => value,
            None => Tensor::ones(&input_shape, (Kind::Int64, device))
        };

        let extended_attention_mask = match mask.dim() {
            3 => mask.unsqueeze(1),
            2 => if self.is_decoder {
                let seq_ids = Tensor::arange(input_shape[1], (Float, device));
                let causal_mask = seq_ids.unsqueeze(0).unsqueeze(0).repeat(&vec!(input_shape[0], input_shape[1], 1));
                let causal_mask = causal_mask.le1(&seq_ids.unsqueeze(0).unsqueeze(-1));
                causal_mask * mask.unsqueeze(1).unsqueeze(1)
            } else {
                mask.unsqueeze(1).unsqueeze(1)
            },
            _ => { return Err("Invalid attention mask dimension, must be 2 or 3"); }
        };

        let extended_attention_mask: Tensor = (extended_attention_mask.ones_like() - extended_attention_mask) * -10000.0;

        let encoder_extended_attention_mask: Option<Tensor> = if self.is_decoder & encoder_hidden_states.is_some() {
            let encoder_hidden_states = encoder_hidden_states.as_ref().unwrap();
            let encoder_hidden_states_shape = encoder_hidden_states.size();
            let encoder_mask = match encoder_mask {
                Some(value) => value.copy(),
                None => Tensor::ones(&[encoder_hidden_states_shape[0], encoder_hidden_states_shape[1]], (Kind::Int64, device))
            };
            match encoder_mask.dim() {
                2 => Some(encoder_mask.unsqueeze(1).unsqueeze(1)),
                3 => Some(encoder_mask.unsqueeze(1)),
                _ => { return Err("Invalid encoder attention mask dimension, must be 2 or 3"); }
            }
        } else {
            None
        };

        let embedding_output = match self.embeddings.forward_t(input_ids, token_type_ids, position_ids, input_embeds, train) {
            Ok(value) => value,
            Err(e) => { return Err(e); }
        };

        let (hidden_state, all_hidden_states, all_attentions) =
            self.encoder.forward_t(&embedding_output,
                                   &Some(extended_attention_mask),
                                   encoder_hidden_states,
                                   &encoder_extended_attention_mask,
                                   train);

        let pooled_output = self.pooler.forward(&hidden_state);

        Ok((hidden_state, pooled_output, all_hidden_states, all_attentions))
    }
}


pub struct BertPredictionHeadTransform {
    dense: nn::Linear,
    activation: Box<dyn Fn(&Tensor) -> Tensor>,
    layer_norm: nn::LayerNorm,
}

impl BertPredictionHeadTransform {
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertPredictionHeadTransform {
        let dense = nn::linear(p / "dense", config.hidden_size, config.hidden_size, Default::default());
        let activation = Box::new(match &config.hidden_act {
            Activation::gelu => _gelu,
            Activation::relu => _relu,
            Activation::mish => _mish
        });
        let layer_norm_config = nn::LayerNormConfig { eps: 1e-12, ..Default::default() };
        let layer_norm = nn::layer_norm(p / "LayerNorm", vec![config.hidden_size], layer_norm_config);

        BertPredictionHeadTransform { dense, activation, layer_norm }
    }

    pub fn forward(&self, hidden_states: &Tensor) -> Tensor {
        ((&self.activation)(&hidden_states.apply(&self.dense))).apply(&self.layer_norm)
    }
}

pub struct BertLMPredictionHead {
    transform: BertPredictionHeadTransform,
    decoder: LinearNoBias,
    bias: Tensor,
}

impl BertLMPredictionHead {
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertLMPredictionHead {
        let p = &(p / "predictions");
        let transform = BertPredictionHeadTransform::new(&(p / "transform"), config);
        let decoder = linear_no_bias(&(p / "decoder"), config.hidden_size, config.vocab_size, Default::default());
        let bias = p.var("bias", &[config.vocab_size], Init::KaimingUniform);

        BertLMPredictionHead { transform, decoder, bias }
    }

    pub fn forward(&self, hidden_states: &Tensor) -> Tensor {
        self.transform.forward(&hidden_states).apply(&self.decoder) + &self.bias
    }
}

/// # BERT for masked language model
/// Base BERT model with a masked language model head to predict missing tokens, for example `"Looks like one [MASK] is missing" -> "person"`
/// It is made of the following blocks:
/// - `bert`: Base BertModel
/// - `cls`: BERT LM prediction head
pub struct BertForMaskedLM {
    bert: BertModel<BertEmbeddings>,
    cls: BertLMPredictionHead,
}

impl BertForMaskedLM {
    /// Build a new `BertForMaskedLM`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the BertForMaskedLM model
    /// * `config` - `BertConfig` object defining the model architecture and vocab size
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::bert::{BertConfig, BertForMaskedLM};
    /// use tch::{nn, Device};
    /// use rust_bert::Config;
    /// use std::path::Path;
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = BertConfig::from_file(config_path);
    /// let bert = BertForMaskedLM::new(&(&p.root() / "bert"), &config);
    /// ```
    ///
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertForMaskedLM {
        let bert = BertModel::new(&(p / "bert"), config);
        let cls = BertLMPredictionHead::new(&(p / "cls"), config);

        BertForMaskedLM { bert, cls }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see *input_embeds*)
    /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
    /// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see *input_ids*)
    /// * `encoder_hidden_states` - Optional encoder hidden state of shape (*batch size*, *encoder_sequence_length*, *hidden_size*). If the model is defined as a decoder and the *encoder_hidden_states* is not None, used in the cross-attention layer as keys and values (query from the decoder).
    /// * `encoder_mask` - Optional encoder attention mask of shape (*batch size*, *encoder_sequence_length*). If the model is defined as a decoder and the *encoder_hidden_states* is not None, used to mask encoder values. Positions with value 0 will be masked.
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `output` - `Tensor` of shape (*batch size*, *num_labels*, *vocab_size*)
    /// * `hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# use rust_bert::bert::{BertForMaskedLM, BertConfig};
    ///# use tch::{nn, Device, Tensor, no_grad};
    ///# use rust_bert::Config;
    ///# use std::path::Path;
    ///# use tch::kind::Kind::Int64;
    ///# let config_path = Path::new("path/to/config.json");
    ///# let device = Device::Cpu;
    ///# let vs = nn::VarStore::new(device);
    ///# let config = BertConfig::from_file(config_path);
    ///# let bert_model = BertForMaskedLM::new(&vs.root(), &config);
    ///  let (batch_size, sequence_length) = (64, 128);
    ///  let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    ///  let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);
    ///
    ///  let (output, all_hidden_states, all_attentions) = no_grad(|| {
    ///    bert_model
    ///         .forward_t(Some(input_tensor),
    ///                    Some(mask),
    ///                    Some(token_type_ids),
    ///                    Some(position_ids),
    ///                    None,
    ///                    &None,
    ///                    &None,
    ///                    false)
    ///    });
    ///
    /// ```
    ///
    pub fn forward_t(&self,
                     input_ids: Option<Tensor>,
                     mask: Option<Tensor>,
                     token_type_ids: Option<Tensor>,
                     position_ids: Option<Tensor>,
                     input_embeds: Option<Tensor>,
                     encoder_hidden_states: &Option<Tensor>,
                     encoder_mask: &Option<Tensor>,
                     train: bool) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>) {
        let (hidden_state, _, all_hidden_states, all_attentions) = self.bert.forward_t(input_ids, mask, token_type_ids, position_ids,
                                                                                       input_embeds, encoder_hidden_states, encoder_mask, train).unwrap();

        let prediction_scores = self.cls.forward(&hidden_state);
        (prediction_scores, all_hidden_states, all_attentions)
    }
}

/// # BERT for sequence classification
/// Base BERT model with a classifier head to perform sentence or document-level classification
/// It is made of the following blocks:
/// - `bert`: Base BertModel
/// - `classifier`: BERT linear layer for classification
pub struct BertForSequenceClassification {
    bert: BertModel<BertEmbeddings>,
    dropout: Dropout,
    classifier: nn::Linear,
}

impl BertForSequenceClassification {
    /// Build a new `BertForSequenceClassification`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the BertForSequenceClassification model
    /// * `config` - `BertConfig` object defining the model architecture and number of classes
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::bert::{BertConfig, BertForSequenceClassification};
    /// use tch::{nn, Device};
    /// use rust_bert::Config;
    /// use std::path::Path;
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = BertConfig::from_file(config_path);
    /// let bert = BertForSequenceClassification::new(&(&p.root() / "bert"), &config);
    /// ```
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertForSequenceClassification {
        let bert = BertModel::new(&(p / "bert"), config);
        let dropout = Dropout::new(config.hidden_dropout_prob);
        let num_labels = config.id2label.as_ref().expect("num_labels not provided in configuration").len() as i64;
        let classifier = nn::linear(p / "classifier", config.hidden_size, num_labels, Default::default());

        BertForSequenceClassification { bert, dropout, classifier }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
    /// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `labels` - `Tensor` of shape (*batch size*, *num_labels*)
    /// * `hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# use rust_bert::bert::{BertForSequenceClassification, BertConfig};
    ///# use tch::{nn, Device, Tensor, no_grad};
    ///# use rust_bert::Config;
    ///# use std::path::Path;
    ///# use tch::kind::Kind::Int64;
    ///# let config_path = Path::new("path/to/config.json");
    ///# let device = Device::Cpu;
    ///# let vs = nn::VarStore::new(device);
    ///# let config = BertConfig::from_file(config_path);
    ///# let bert_model = BertForSequenceClassification::new(&vs.root(), &config);
    ///  let (batch_size, sequence_length) = (64, 128);
    ///  let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    ///  let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);
    ///
    ///  let (labels, all_hidden_states, all_attentions) = no_grad(|| {
    ///    bert_model
    ///         .forward_t(Some(input_tensor),
    ///                    Some(mask),
    ///                    Some(token_type_ids),
    ///                    Some(position_ids),
    ///                    None,
    ///                    false)
    ///    });
    ///
    /// ```
    ///
    pub fn forward_t(&self,
                     input_ids: Option<Tensor>,
                     mask: Option<Tensor>,
                     token_type_ids: Option<Tensor>,
                     position_ids: Option<Tensor>,
                     input_embeds: Option<Tensor>,
                     train: bool) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>) {
        let (_, pooled_output, all_hidden_states, all_attentions) = self.bert.forward_t(input_ids, mask, token_type_ids, position_ids,
                                                                                        input_embeds, &None, &None, train).unwrap();

        let output = pooled_output.apply_t(&self.dropout, train).apply(&self.classifier);
        (output, all_hidden_states, all_attentions)
    }
}

/// # BERT for multiple choices
/// Multiple choices model using a BERT base model and a linear classifier.
/// Input should be in the form `[CLS] Context [SEP] Possible choice [SEP]`. The choice is made along the batch axis,
/// assuming all elements of the batch are alternatives to be chosen from for a given context.
/// It is made of the following blocks:
/// - `bert`: Base BertModel
/// - `classifier`: Linear layer for multiple choices
pub struct BertForMultipleChoice {
    bert: BertModel<BertEmbeddings>,
    dropout: Dropout,
    classifier: nn::Linear,
}

impl BertForMultipleChoice {
    /// Build a new `BertForMultipleChoice`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the BertForMultipleChoice model
    /// * `config` - `BertConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::bert::{BertConfig, BertForMultipleChoice};
    /// use tch::{nn, Device};
    /// use rust_bert::Config;
    /// use std::path::Path;
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = BertConfig::from_file(config_path);
    /// let bert = BertForMultipleChoice::new(&(&p.root() / "bert"), &config);
    /// ```
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertForMultipleChoice {
        let bert = BertModel::new(&(p / "bert"), config);
        let dropout = Dropout::new(config.hidden_dropout_prob);
        let classifier = nn::linear(p / "classifier", config.hidden_size, 1, Default::default());

        BertForMultipleChoice { bert, dropout, classifier }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Input tensor of shape (*batch size*, *sequence_length*).
    /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
    /// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `output` - `Tensor` of shape (*1*, *batch size*) containing the logits for each of the alternatives given
    /// * `hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# use rust_bert::bert::{BertForMultipleChoice, BertConfig};
    ///# use tch::{nn, Device, Tensor, no_grad};
    ///# use rust_bert::Config;
    ///# use std::path::Path;
    ///# use tch::kind::Kind::Int64;
    ///# let config_path = Path::new("path/to/config.json");
    ///# let device = Device::Cpu;
    ///# let vs = nn::VarStore::new(device);
    ///# let config = BertConfig::from_file(config_path);
    ///# let bert_model = BertForMultipleChoice::new(&vs.root(), &config);
    ///  let (num_choices, sequence_length) = (3, 128);
    ///  let input_tensor = Tensor::rand(&[num_choices, sequence_length], (Int64, device));
    ///  let mask = Tensor::zeros(&[num_choices, sequence_length], (Int64, device));
    ///  let token_type_ids = Tensor::zeros(&[num_choices, sequence_length], (Int64, device));
    ///  let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[num_choices, sequence_length], true);
    ///
    ///  let (choices, all_hidden_states, all_attentions) = no_grad(|| {
    ///    bert_model
    ///         .forward_t(input_tensor,
    ///                    Some(mask),
    ///                    Some(token_type_ids),
    ///                    Some(position_ids),
    ///                    false)
    ///    });
    ///
    /// ```
    ///
    pub fn forward_t(&self,
                     input_ids: Tensor,
                     mask: Option<Tensor>,
                     token_type_ids: Option<Tensor>,
                     position_ids: Option<Tensor>,
                     train: bool) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>) {
        let num_choices = input_ids.size()[1];

        let input_ids = input_ids.view((-1, *input_ids.size().last().unwrap()));
        let mask = match mask {
            Some(value) => Some(value.view((-1, *value.size().last().unwrap()))),
            None => None
        };
        let token_type_ids = match token_type_ids {
            Some(value) => Some(value.view((-1, *value.size().last().unwrap()))),
            None => None
        };
        let position_ids = match position_ids {
            Some(value) => Some(value.view((-1, *value.size().last().unwrap()))),
            None => None
        };


        let (_, pooled_output, all_hidden_states, all_attentions) = self.bert.forward_t(Some(input_ids), mask, token_type_ids, position_ids,
                                                                                        None, &None, &None, train).unwrap();

        let output = pooled_output.apply_t(&self.dropout, train).apply(&self.classifier).view((-1, num_choices));
        (output, all_hidden_states, all_attentions)
    }
}

/// # BERT for token classification (e.g. NER, POS)
/// Token-level classifier predicting a label for each token provided. Note that because of wordpiece tokenization, the labels predicted are
/// not necessarily aligned with words in the sentence.
/// It is made of the following blocks:
/// - `bert`: Base BertModel
/// - `classifier`: Linear layer for token classification
pub struct BertForTokenClassification {
    bert: BertModel<BertEmbeddings>,
    dropout: Dropout,
    classifier: nn::Linear,
}

impl BertForTokenClassification {
    /// Build a new `BertForTokenClassification`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the BertForTokenClassification model
    /// * `config` - `BertConfig` object defining the model architecture, number of output labels and label mapping
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::bert::{BertConfig, BertForTokenClassification};
    /// use tch::{nn, Device};
    /// use rust_bert::Config;
    /// use std::path::Path;
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = BertConfig::from_file(config_path);
    /// let bert = BertForTokenClassification::new(&(&p.root() / "bert"), &config);
    /// ```
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertForTokenClassification {
        let bert = BertModel::new(&(p / "bert"), config);
        let dropout = Dropout::new(config.hidden_dropout_prob);
        let num_labels = config.id2label.as_ref().expect("num_labels not provided in configuration").len() as i64;
        let classifier = nn::linear(p / "classifier", config.hidden_size, num_labels, Default::default());

        BertForTokenClassification { bert, dropout, classifier }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
    /// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `output` - `Tensor` of shape (*batch size*, *sequence_length*, *num_labels*) containing the logits for each of the input tokens and classes
    /// * `hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# use rust_bert::bert::{BertForTokenClassification, BertConfig};
    ///# use tch::{nn, Device, Tensor, no_grad};
    ///# use rust_bert::Config;
    ///# use std::path::Path;
    ///# use tch::kind::Kind::Int64;
    ///# let config_path = Path::new("path/to/config.json");
    ///# let device = Device::Cpu;
    ///# let vs = nn::VarStore::new(device);
    ///# let config = BertConfig::from_file(config_path);
    ///# let bert_model = BertForTokenClassification::new(&vs.root(), &config);
    ///  let (batch_size, sequence_length) = (64, 128);
    ///  let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    ///  let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);
    ///
    ///  let (token_labels, all_hidden_states, all_attentions) = no_grad(|| {
    ///    bert_model
    ///         .forward_t(Some(input_tensor),
    ///                    Some(mask),
    ///                    Some(token_type_ids),
    ///                    Some(position_ids),
    ///                    None,
    ///                    false)
    ///    });
    ///
    /// ```
    ///
    pub fn forward_t(&self,
                     input_ids: Option<Tensor>,
                     mask: Option<Tensor>,
                     token_type_ids: Option<Tensor>,
                     position_ids: Option<Tensor>,
                     input_embeds: Option<Tensor>,
                     train: bool) -> (Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>) {
        let (hidden_state, _, all_hidden_states, all_attentions) = self.bert.forward_t(input_ids, mask, token_type_ids, position_ids,
                                                                                       input_embeds, &None, &None, train).unwrap();

        let sequence_output = hidden_state.apply_t(&self.dropout, train).apply(&self.classifier);
        (sequence_output, all_hidden_states, all_attentions)
    }
}

/// # BERT for question answering
/// Extractive question-answering model based on a BERT language model. Identifies the segment of a context that answers a provided question.
/// Please note that a significant amount of pre- and post-processing is required to perform end-to-end question answering.
/// See the question answering pipeline (also provided in this crate) for more details.
/// It is made of the following blocks:
/// - `bert`: Base BertModel
/// - `qa_outputs`: Linear layer for question answering
pub struct BertForQuestionAnswering {
    bert: BertModel<BertEmbeddings>,
    qa_outputs: nn::Linear,
}

impl BertForQuestionAnswering {
    /// Build a new `BertForQuestionAnswering`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the BertForQuestionAnswering model
    /// * `config` - `BertConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::bert::{BertConfig, BertForQuestionAnswering};
    /// use tch::{nn, Device};
    /// use rust_bert::Config;
    /// use std::path::Path;
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = BertConfig::from_file(config_path);
    /// let bert = BertForQuestionAnswering::new(&(&p.root() / "bert"), &config);
    /// ```
    pub fn new(p: &nn::Path, config: &BertConfig) -> BertForQuestionAnswering {
        let bert = BertModel::new(&(p / "bert"), config);
        let num_labels = 2;
        let qa_outputs = nn::linear(p / "qa_outputs", config.hidden_size, num_labels, Default::default());

        BertForQuestionAnswering { bert, qa_outputs }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1
    /// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *[SEP]*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `start_scores` - `Tensor` of shape (*batch size*, *sequence_length*) containing the logits for start of the answer
    /// * `end_scores` - `Tensor` of shape (*batch size*, *sequence_length*) containing the logits for end of the answer
    /// * `hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    /// * `attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    ///# use rust_bert::bert::{BertForQuestionAnswering, BertConfig};
    ///# use tch::{nn, Device, Tensor, no_grad};
    ///# use rust_bert::Config;
    ///# use std::path::Path;
    ///# use tch::kind::Kind::Int64;
    ///# let config_path = Path::new("path/to/config.json");
    ///# let device = Device::Cpu;
    ///# let vs = nn::VarStore::new(device);
    ///# let config = BertConfig::from_file(config_path);
    ///# let bert_model = BertForQuestionAnswering::new(&vs.root(), &config);
    ///  let (batch_size, sequence_length) = (64, 128);
    ///  let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    ///  let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    ///  let position_ids = Tensor::arange(sequence_length, (Int64, device)).expand(&[batch_size, sequence_length], true);
    ///
    ///  let (start_scores, end_scores, all_hidden_states, all_attentions) = no_grad(|| {
    ///    bert_model
    ///         .forward_t(Some(input_tensor),
    ///                    Some(mask),
    ///                    Some(token_type_ids),
    ///                    Some(position_ids),
    ///                    None,
    ///                    false)
    ///    });
    ///
    /// ```
    ///
    pub fn forward_t(&self,
                     input_ids: Option<Tensor>,
                     mask: Option<Tensor>,
                     token_type_ids: Option<Tensor>,
                     position_ids: Option<Tensor>,
                     input_embeds: Option<Tensor>,
                     train: bool) -> (Tensor, Tensor, Option<Vec<Tensor>>, Option<Vec<Tensor>>) {
        let (hidden_state, _, all_hidden_states, all_attentions) = self.bert.forward_t(input_ids, mask, token_type_ids, position_ids,
                                                                                       input_embeds, &None, &None, train).unwrap();

        let sequence_output = hidden_state.apply(&self.qa_outputs);
        let logits = sequence_output.split(1, -1);
        let (start_logits, end_logits) = (&logits[0], &logits[1]);
        let start_logits = start_logits.squeeze1(-1);
        let end_logits = end_logits.squeeze1(-1);

        (start_logits, end_logits, all_hidden_states, all_attentions)
    }
}