1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019-2020 Guillaume Becquin
// Copyright 2020 Maarten van Gompel
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Sequence classification pipeline (e.g. Sentiment Analysis)
//! More generic sequence classification pipeline, works with multiple models (Bert, Roberta)
//!
//! ```no_run
//! use rust_bert::pipelines::sequence_classification::SequenceClassificationConfig;
//! use rust_bert::resources::{RemoteResource};
//! use rust_bert::distilbert::{DistilBertModelResources, DistilBertVocabResources, DistilBertConfigResources};
//! use rust_bert::pipelines::sequence_classification::SequenceClassificationModel;
//! use rust_bert::pipelines::common::ModelType;
//! # fn main() -> anyhow::Result<()> {
//!
//! //Load a configuration
//! use rust_bert::pipelines::common::ModelResource;
//! let config = SequenceClassificationConfig::new(ModelType::DistilBert,
//! ModelResource::Torch(Box::new(RemoteResource::from_pretrained(DistilBertModelResources::DISTIL_BERT_SST2))),
//! RemoteResource::from_pretrained(DistilBertVocabResources::DISTIL_BERT_SST2),
//! RemoteResource::from_pretrained(DistilBertConfigResources::DISTIL_BERT_SST2),
//! None, // Merge resources
//! true, //lowercase
//! None, //strip_accents
//! None, //add_prefix_space
//! );
//!
//! //Create the model
//! let sequence_classification_model = SequenceClassificationModel::new(config)?;
//!
//! let input = [
//! "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.",
//! "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...",
//! "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.",
//! ];
//! let output = sequence_classification_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! (Example courtesy of [IMDb](http://www.imdb.com))
//!
//! Output: \
//! ```no_run
//! # use rust_bert::pipelines::sequence_classification::Label;
//! let output =
//! [
//! Label { text: String::from("POSITIVE"), score: 0.9986, id: 1, sentence: 0},
//! Label { text: String::from("NEGATIVE"), score: 0.9985, id: 0, sentence: 1},
//! Label { text: String::from("POSITIVE"), score: 0.9988, id: 1, sentence: 12},
//! ]
//! # ;
//! ```
use crate::albert::AlbertForSequenceClassification;
use crate::bart::BartForSequenceClassification;
use crate::bert::BertForSequenceClassification;
use crate::common::error::RustBertError;
use crate::deberta::DebertaForSequenceClassification;
use crate::distilbert::DistilBertModelClassifier;
use crate::fnet::FNetForSequenceClassification;
use crate::longformer::LongformerForSequenceClassification;
use crate::mobilebert::MobileBertForSequenceClassification;
use crate::pipelines::common::{
cast_var_store, get_device, ConfigOption, ModelResource, ModelType, TokenizerOption,
};
use crate::reformer::ReformerForSequenceClassification;
use crate::resources::ResourceProvider;
use crate::roberta::RobertaForSequenceClassification;
use crate::xlnet::XLNetForSequenceClassification;
use serde::{Deserialize, Serialize};
use std::collections::HashMap;
use tch::nn::VarStore;
use tch::{no_grad, Device, Kind, Tensor};
use crate::deberta_v2::DebertaV2ForSequenceClassification;
#[cfg(feature = "onnx")]
use crate::pipelines::onnx::{config::ONNXEnvironmentConfig, ONNXEncoder};
#[cfg(feature = "remote")]
use crate::{
distilbert::{DistilBertConfigResources, DistilBertModelResources, DistilBertVocabResources},
resources::RemoteResource,
};
#[derive(Debug, Serialize, Deserialize, Clone)]
/// # Label generated by a `SequenceClassificationModel`
pub struct Label {
/// Label String representation
pub text: String,
/// Confidence score
pub score: f64,
/// Label ID
pub id: i64,
/// Sentence index
#[serde(default)]
pub sentence: usize,
}
/// # Configuration for SequenceClassificationModel
/// Contains information regarding the model to load and device to place the model on.
pub struct SequenceClassificationConfig {
/// Model type
pub model_type: ModelType,
/// Model weights resource (default: pretrained BERT model on CoNLL)
pub model_resource: ModelResource,
/// Config resource (default: pretrained BERT model on CoNLL)
pub config_resource: Box<dyn ResourceProvider + Send>,
/// Vocab resource (default: pretrained BERT model on CoNLL)
pub vocab_resource: Box<dyn ResourceProvider + Send>,
/// Merges resource (default: None)
pub merges_resource: Option<Box<dyn ResourceProvider + Send>>,
/// Automatically lower case all input upon tokenization (assumes a lower-cased model)
pub lower_case: bool,
/// Flag indicating if the tokenizer should strip accents (normalization). Only used for BERT / ALBERT models
pub strip_accents: Option<bool>,
/// Flag indicating if the tokenizer should add a white space before each tokenized input (needed for some Roberta models)
pub add_prefix_space: Option<bool>,
/// Device to place the model on (default: CUDA/GPU when available)
pub device: Device,
/// Model weights precision. If not provided, will default to full precision on CPU, or the loaded weights precision otherwise
pub kind: Option<Kind>,
}
impl SequenceClassificationConfig {
/// Instantiate a new sequence classification configuration of the supplied type.
///
/// # Arguments
///
/// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded!)
/// * model - The `ResourceProvider` pointing to the model to load (e.g. model.ot)
/// * config - The `ResourceProvider` pointing to the model configuration to load (e.g. config.json)
/// * vocab - The `ResourceProvider` pointing to the tokenizer's vocabulary to load (e.g. vocab.txt/vocab.json)
/// * vocab - An optional `ResourceProvider` pointing to the tokenizer's merge file to load (e.g. merges.txt), needed only for Roberta.
/// * lower_case - A `bool` indicating whether the tokenizer should lower case all input (in case of a lower-cased model)
pub fn new<RC, RV>(
model_type: ModelType,
model_resource: ModelResource,
config_resource: RC,
vocab_resource: RV,
merges_resource: Option<RV>,
lower_case: bool,
strip_accents: impl Into<Option<bool>>,
add_prefix_space: impl Into<Option<bool>>,
) -> SequenceClassificationConfig
where
RC: ResourceProvider + Send + 'static,
RV: ResourceProvider + Send + 'static,
{
SequenceClassificationConfig {
model_type,
model_resource,
config_resource: Box::new(config_resource),
vocab_resource: Box::new(vocab_resource),
merges_resource: merges_resource.map(|r| Box::new(r) as Box<_>),
lower_case,
strip_accents: strip_accents.into(),
add_prefix_space: add_prefix_space.into(),
device: Device::cuda_if_available(),
kind: None,
}
}
}
#[cfg(feature = "remote")]
impl Default for SequenceClassificationConfig {
/// Provides a defaultSST-2 sentiment analysis model (English)
fn default() -> SequenceClassificationConfig {
SequenceClassificationConfig::new(
ModelType::DistilBert,
ModelResource::Torch(Box::new(RemoteResource::from_pretrained(
DistilBertModelResources::DISTIL_BERT_SST2,
))),
RemoteResource::from_pretrained(DistilBertConfigResources::DISTIL_BERT_SST2),
RemoteResource::from_pretrained(DistilBertVocabResources::DISTIL_BERT_SST2),
None,
true,
None,
None,
)
}
}
#[allow(clippy::large_enum_variant)]
/// # Abstraction that holds one particular sequence classification model, for any of the supported models
pub enum SequenceClassificationOption {
/// Bert for Sequence Classification
Bert(BertForSequenceClassification),
/// DeBERTa for Sequence Classification
Deberta(DebertaForSequenceClassification),
/// DeBERTa V2 for Sequence Classification
DebertaV2(DebertaV2ForSequenceClassification),
/// DistilBert for Sequence Classification
DistilBert(DistilBertModelClassifier),
/// MobileBert for Sequence Classification
MobileBert(MobileBertForSequenceClassification),
/// Roberta for Sequence Classification
Roberta(RobertaForSequenceClassification),
/// XLMRoberta for Sequence Classification
XLMRoberta(RobertaForSequenceClassification),
/// Albert for Sequence Classification
Albert(AlbertForSequenceClassification),
/// XLNet for Sequence Classification
XLNet(XLNetForSequenceClassification),
/// Bart for Sequence Classification
Bart(BartForSequenceClassification),
/// Reformer for Sequence Classification
Reformer(ReformerForSequenceClassification),
/// Longformer for Sequence Classification
Longformer(LongformerForSequenceClassification),
/// FNet for Sequence Classification
FNet(FNetForSequenceClassification),
/// ONNX Model for Sequence Classification
#[cfg(feature = "onnx")]
ONNX(ONNXEncoder),
}
impl SequenceClassificationOption {
/// Instantiate a new sequence classification model of the supplied type.
///
/// # Arguments
///
/// * `SequenceClassificationConfig` - Sequence classification pipeline configuration. The type of model created will be inferred from the
/// `ModelResources` (Torch or ONNX) and `ModelType` (Architecture for Torch models) variants provided and
pub fn new(config: &SequenceClassificationConfig) -> Result<Self, RustBertError> {
match config.model_resource {
ModelResource::Torch(_) => Self::new_torch(config),
#[cfg(feature = "onnx")]
ModelResource::ONNX(_) => Self::new_onnx(config),
}
}
fn new_torch(config: &SequenceClassificationConfig) -> Result<Self, RustBertError> {
let device = config.device;
let weights_path = config.model_resource.get_torch_local_path()?;
let mut var_store = VarStore::new(device);
let model_config =
&ConfigOption::from_file(config.model_type, config.config_resource.get_local_path()?);
let model_type = config.model_type;
let model = match model_type {
ModelType::Bert => {
if let ConfigOption::Bert(config) = model_config {
Ok(Self::Bert(
BertForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a BertConfig for Bert!".to_string(),
))
}
}
ModelType::Deberta => {
if let ConfigOption::Deberta(config) = model_config {
Ok(Self::Deberta(
DebertaForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a DebertaConfig for DeBERTa!".to_string(),
))
}
}
ModelType::DebertaV2 => {
if let ConfigOption::DebertaV2(config) = model_config {
Ok(Self::DebertaV2(
DebertaV2ForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a DebertaV2Config for DeBERTa V2!".to_string(),
))
}
}
ModelType::DistilBert => {
if let ConfigOption::DistilBert(config) = model_config {
Ok(Self::DistilBert(
DistilBertModelClassifier::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a DistilBertConfig for DistilBert!".to_string(),
))
}
}
ModelType::MobileBert => {
if let ConfigOption::MobileBert(config) = model_config {
Ok(Self::MobileBert(
MobileBertForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a MobileBertConfig for MobileBert!".to_string(),
))
}
}
ModelType::Roberta => {
if let ConfigOption::Roberta(config) = model_config {
Ok(Self::Roberta(
RobertaForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a RobertaConfig for Roberta!".to_string(),
))
}
}
ModelType::XLMRoberta => {
if let ConfigOption::Roberta(config) = model_config {
Ok(Self::XLMRoberta(
RobertaForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a RobertaConfig for Roberta!".to_string(),
))
}
}
ModelType::Albert => {
if let ConfigOption::Albert(config) = model_config {
Ok(Self::Albert(
AlbertForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply an AlbertConfig for Albert!".to_string(),
))
}
}
ModelType::XLNet => {
if let ConfigOption::XLNet(config) = model_config {
Ok(Self::XLNet(
XLNetForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply an XLNetConfig for XLNet!".to_string(),
))
}
}
ModelType::Bart => {
if let ConfigOption::Bart(config) = model_config {
Ok(Self::Bart(
BartForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a BertConfig for Bert!".to_string(),
))
}
}
ModelType::Reformer => {
if let ConfigOption::Reformer(config) = model_config {
Ok(Self::Reformer(
ReformerForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a ReformerConfig for Reformer!".to_string(),
))
}
}
ModelType::Longformer => {
if let ConfigOption::Longformer(config) = model_config {
Ok(Self::Longformer(
LongformerForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a LongformerConfig for Longformer!".to_string(),
))
}
}
ModelType::FNet => {
if let ConfigOption::FNet(config) = model_config {
Ok(Self::FNet(
FNetForSequenceClassification::new(var_store.root(), config)?,
))
} else {
Err(RustBertError::InvalidConfigurationError(
"You can only supply a FNetConfig for FNet!".to_string(),
))
}
}
#[cfg(feature = "onnx")]
ModelType::ONNX => Err(RustBertError::InvalidConfigurationError(
"A `ModelType::ONNX` ModelType was provided in the configuration with `ModelResources::TORCH`, these are incompatible".to_string(),
)),
_ => Err(RustBertError::InvalidConfigurationError(format!(
"Sequence Classification not implemented for {model_type:?}!",
))),
}?;
var_store.load(weights_path)?;
cast_var_store(&mut var_store, config.kind, device);
Ok(model)
}
#[cfg(feature = "onnx")]
pub fn new_onnx(config: &SequenceClassificationConfig) -> Result<Self, RustBertError> {
let onnx_config = ONNXEnvironmentConfig::from_device(config.device);
let environment = onnx_config.get_environment()?;
let encoder_file = config
.model_resource
.get_onnx_local_paths()?
.encoder_path
.ok_or(RustBertError::InvalidConfigurationError(
"An encoder file must be provided for sequence classification ONNX models."
.to_string(),
))?;
Ok(Self::ONNX(ONNXEncoder::new(
encoder_file,
&environment,
&onnx_config,
)?))
}
/// Returns the `ModelType` for this SequenceClassificationOption
pub fn model_type(&self) -> ModelType {
match *self {
Self::Bert(_) => ModelType::Bert,
Self::Deberta(_) => ModelType::Deberta,
Self::DebertaV2(_) => ModelType::DebertaV2,
Self::Roberta(_) => ModelType::Roberta,
Self::XLMRoberta(_) => ModelType::Roberta,
Self::DistilBert(_) => ModelType::DistilBert,
Self::MobileBert(_) => ModelType::MobileBert,
Self::Albert(_) => ModelType::Albert,
Self::XLNet(_) => ModelType::XLNet,
Self::Bart(_) => ModelType::Bart,
Self::Reformer(_) => ModelType::Reformer,
Self::Longformer(_) => ModelType::Longformer,
Self::FNet(_) => ModelType::FNet,
#[cfg(feature = "onnx")]
Self::ONNX(_) => ModelType::ONNX,
}
}
/// Interface method to forward_t() of the particular models.
pub fn forward_t(
&self,
input_ids: Option<&Tensor>,
mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Tensor {
match *self {
Self::Bart(ref model) => {
model
.forward_t(
input_ids.expect("`input_ids` must be provided for BART models"),
mask,
None,
None,
None,
train,
)
.decoder_output
}
Self::Bert(ref model) => {
model
.forward_t(
input_ids,
mask,
token_type_ids,
position_ids,
input_embeds,
train,
)
.logits
}
Self::Deberta(ref model) => {
model
.forward_t(
input_ids,
mask,
token_type_ids,
position_ids,
input_embeds,
train,
)
.expect("Error in Deberta forward_t")
.logits
}
Self::DebertaV2(ref model) => {
model
.forward_t(
input_ids,
mask,
token_type_ids,
position_ids,
input_embeds,
train,
)
.expect("Error in Deberta V2 forward_t")
.logits
}
Self::DistilBert(ref model) => {
model
.forward_t(input_ids, mask, input_embeds, train)
.expect("Error in distilbert forward_t")
.logits
}
Self::MobileBert(ref model) => {
model
.forward_t(input_ids, None, None, input_embeds, mask, train)
.expect("Error in mobilebert forward_t")
.logits
}
Self::Roberta(ref model) | Self::XLMRoberta(ref model) => {
model
.forward_t(
input_ids,
mask,
token_type_ids,
position_ids,
input_embeds,
train,
)
.logits
}
Self::Albert(ref model) => {
model
.forward_t(
input_ids,
mask,
token_type_ids,
position_ids,
input_embeds,
train,
)
.logits
}
Self::XLNet(ref model) => {
model
.forward_t(
input_ids,
mask,
None,
None,
None,
token_type_ids,
input_embeds,
train,
)
.logits
}
Self::Reformer(ref model) => {
model
.forward_t(input_ids, None, None, mask, None, train)
.expect("Error in Reformer forward pass.")
.logits
}
Self::Longformer(ref model) => {
model
.forward_t(
input_ids,
mask,
None,
token_type_ids,
position_ids,
input_embeds,
train,
)
.expect("Error in Longformer forward pass.")
.logits
}
Self::FNet(ref model) => {
model
.forward_t(input_ids, token_type_ids, position_ids, input_embeds, train)
.expect("Error in FNet forward pass.")
.logits
}
#[cfg(feature = "onnx")]
Self::ONNX(ref model) => {
let attention_mask = input_ids.unwrap().ones_like();
model
.forward(
input_ids,
Some(&attention_mask),
token_type_ids,
position_ids,
input_embeds,
)
.expect("Error in ONNX forward pass.")
.logits
.unwrap()
}
}
}
}
/// # SequenceClassificationModel for Classification (e.g. Sentiment Analysis)
pub struct SequenceClassificationModel {
tokenizer: TokenizerOption,
sequence_classifier: SequenceClassificationOption,
label_mapping: HashMap<i64, String>,
device: Device,
max_length: usize,
}
impl SequenceClassificationModel {
/// Build a new `SequenceClassificationModel`
///
/// # Arguments
///
/// * `config` - `SequenceClassificationConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::sequence_classification::SequenceClassificationModel;
///
/// let model = SequenceClassificationModel::new(Default::default())?;
/// # Ok(())
/// # }
/// ```
pub fn new(
config: SequenceClassificationConfig,
) -> Result<SequenceClassificationModel, RustBertError> {
let vocab_path = config.vocab_resource.get_local_path()?;
let merges_path = config
.merges_resource
.as_ref()
.map(|resource| resource.get_local_path())
.transpose()?;
let tokenizer = TokenizerOption::from_file(
config.model_type,
vocab_path.to_str().unwrap(),
merges_path.as_deref().map(|path| path.to_str().unwrap()),
config.lower_case,
config.strip_accents,
config.add_prefix_space,
)?;
Self::new_with_tokenizer(config, tokenizer)
}
/// Build a new `SequenceClassificationModel` with a provided tokenizer.
///
/// # Arguments
///
/// * `config` - `SequenceClassificationConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
/// * `tokenizer` - `TokenizerOption` tokenizer to use for sequence classification.
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::common::{ModelType, TokenizerOption};
/// use rust_bert::pipelines::sequence_classification::SequenceClassificationModel;
/// let tokenizer = TokenizerOption::from_file(
/// ModelType::Bert,
/// "path/to/vocab.txt",
/// None,
/// false,
/// None,
/// None,
/// )?;
/// let model = SequenceClassificationModel::new_with_tokenizer(Default::default(), tokenizer)?;
/// # Ok(())
/// # }
/// ```
pub fn new_with_tokenizer(
config: SequenceClassificationConfig,
tokenizer: TokenizerOption,
) -> Result<SequenceClassificationModel, RustBertError> {
let config_path = config.config_resource.get_local_path()?;
let sequence_classifier = SequenceClassificationOption::new(&config)?;
let model_config = ConfigOption::from_file(config.model_type, config_path);
let max_length = model_config
.get_max_len()
.map(|v| v as usize)
.unwrap_or(usize::MAX);
let label_mapping = model_config.get_label_mapping().clone();
let device = get_device(config.model_resource, config.device);
Ok(SequenceClassificationModel {
tokenizer,
sequence_classifier,
label_mapping,
device,
max_length,
})
}
/// Get a reference to the model tokenizer.
pub fn get_tokenizer(&self) -> &TokenizerOption {
&self.tokenizer
}
/// Get a mutable reference to the model tokenizer.
pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption {
&mut self.tokenizer
}
/// Classify texts
///
/// # Arguments
///
/// * `input` - `&[&str]` Array of texts to classify.
///
/// # Returns
///
/// * `Vec<Label>` containing labels for input texts
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// # use rust_bert::pipelines::sequence_classification::SequenceClassificationModel;
///
/// let sequence_classification_model = SequenceClassificationModel::new(Default::default())?;
/// let input = [
/// "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.",
/// "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...",
/// "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.",
/// ];
/// let output = sequence_classification_model.predict(&input);
/// # Ok(())
/// # }
/// ```
pub fn predict<'a, S>(&self, input: S) -> Vec<Label>
where
S: AsRef<[&'a str]>,
{
let (input_ids, token_type_ids) =
self.tokenizer
.tokenize_and_pad(input.as_ref(), self.max_length, self.device);
let output = no_grad(|| {
let output = self.sequence_classifier.forward_t(
Some(&input_ids),
None,
Some(&token_type_ids),
None,
None,
false,
);
output.softmax(-1, Kind::Float).detach().to(Device::Cpu)
});
let label_indices = output.as_ref().argmax(-1, true).squeeze_dim(1);
let scores = output
.gather(1, &label_indices.unsqueeze(-1), false)
.squeeze_dim(1);
let label_indices = label_indices.iter::<i64>().unwrap().collect::<Vec<i64>>();
let scores = scores.iter::<f64>().unwrap().collect::<Vec<f64>>();
let mut labels: Vec<Label> = vec![];
for sentence_idx in 0..label_indices.len() {
let label_string = self
.label_mapping
.get(&label_indices[sentence_idx])
.unwrap()
.clone();
let label = Label {
text: label_string,
score: scores[sentence_idx],
id: label_indices[sentence_idx],
sentence: sentence_idx,
};
labels.push(label)
}
labels
}
/// Multi-label classification of texts
///
/// # Arguments
///
/// * `input` - `&[&str]` Array of texts to classify.
/// * `threshold` - `f64` threshold above which a label will be considered true by the classifier
///
/// # Returns
///
/// * `Vec<Vec<Label>>` containing a vector of true labels for each input text
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// # use rust_bert::pipelines::sequence_classification::SequenceClassificationModel;
///
/// let sequence_classification_model = SequenceClassificationModel::new(Default::default())?;
/// let input = [
/// "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.",
/// "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...",
/// "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.",
/// ];
/// let output = sequence_classification_model.predict_multilabel(&input, 0.5);
/// # Ok(())
/// # }
/// ```
pub fn predict_multilabel(
&self,
input: &[&str],
threshold: f64,
) -> Result<Vec<Vec<Label>>, RustBertError> {
let (input_ids, token_type_ids) =
self.tokenizer
.tokenize_and_pad(input.as_ref(), self.max_length, self.device);
let output = no_grad(|| {
let output = self.sequence_classifier.forward_t(
Some(&input_ids),
None,
Some(&token_type_ids),
None,
None,
false,
);
output.sigmoid().detach().to(Device::Cpu)
});
let label_indices = output.as_ref().ge(threshold).nonzero();
let mut labels: Vec<Vec<Label>> = vec![];
let mut sequence_labels: Vec<Label> = vec![];
for sentence_idx in 0..label_indices.size()[0] {
let label_index_tensor = label_indices.get(sentence_idx);
let sentence_label = label_index_tensor
.iter::<i64>()
.unwrap()
.collect::<Vec<i64>>();
let (sentence, id) = (sentence_label[0], sentence_label[1]);
if sentence as usize > labels.len() {
labels.push(sequence_labels);
sequence_labels = vec![];
}
let score = output.double_value(sentence_label.as_slice());
let label_string = self.label_mapping.get(&id).unwrap().to_owned();
let label = Label {
text: label_string,
score,
id,
sentence: sentence as usize,
};
sequence_labels.push(label);
}
if !sequence_labels.is_empty() {
labels.push(sequence_labels);
}
Ok(labels)
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[ignore] // no need to run, compilation is enough to verify it is Send
fn test() {
let config = SequenceClassificationConfig::default();
let _: Box<dyn Send> = Box::new(SequenceClassificationModel::new(config));
}
}