1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
//! # Ready-to-use NLP pipelines and models
//!
//! Based on Huggingface's pipelines, ready to use end-to-end NLP pipelines are available as part of this crate. The following capabilities are currently available:
//!
//! **Disclaimer**
//! The contributors of this repository are not responsible for any generation from the 3rd party utilization of the pretrained systems proposed herein.
//!
//! #### 1. Question Answering
//! Extractive question answering from a given question and context. DistilBERT model finetuned on SQuAD (Stanford Question Answering Dataset)
//!
//! ```ignore
//! use rust_bert::pipelines::question_answering::{QaInput, QuestionAnsweringModel};
//! # fn main() -> anyhow::Result<()> {
//! let qa_model = QuestionAnsweringModel::new(Default::default())?;
//!
//! let question = String::from("Where does Amy live ?");
//! let context = String::from("Amy lives in Amsterdam");
//!
//! let answers = qa_model.predict(&[QaInput { question, context }], 1, 32);
//! # Ok(())
//! # }
//! ```
//!
//! Output: \
//! ```ignore
//! # use rust_bert::pipelines::question_answering::Answer;
//! # let output =
//! [Answer {
//! score: 0.9976,
//! start: 13,
//! end: 21,
//! answer: String::from("Amsterdam"),
//! }]
//! # ;
//! ```
//!
//! #### 2. Translation
//! Translation using the MarianMT architecture and pre-trained models from the Opus-MT team from Language Technology at the University of Helsinki.
//! Currently supported languages are :
//! - English <-> French
//! - English <-> Spanish
//! - English <-> Portuguese
//! - English <-> Italian
//! - English <-> Catalan
//! - English <-> German
//! - English <-> Russian
//! - English <-> Chinese (Simplified)
//! - English <-> Chinese (Traditional)
//! - English <-> Dutch
//! - English <-> Swedish
//! - English <-> Arabic
//! - English <-> Hebrew
//! - English <-> Hindi
//! - French <-> German
//!
//! ```ignore
//! # fn main() -> anyhow::Result<()> {
//! # use rust_bert::pipelines::generation_utils::LanguageGenerator;
//! use rust_bert::pipelines::common::ModelType;
//! use rust_bert::pipelines::translation::{
//! Language, TranslationConfig, TranslationModel, TranslationModelBuilder,
//! };
//! use tch::Device;
//! let model = TranslationModelBuilder::new()
//! .with_device(Device::cuda_if_available())
//! .with_model_type(ModelType::Marian)
//! .with_source_languages(vec![Language::English])
//! .with_target_languages(vec![Language::French])
//! .create_model()?;
//!
//! let input = ["This is a sentence to be translated"];
//!
//! let output = model.translate(&input, None, Language::French);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```ignore
//! # let output =
//! " Il s'agit d'une phrase à traduire"
//! # ;
//! ```
//!
//! Output: \
//! ```ignore
//! # let output =
//! "Il s'agit d'une phrase à traduire"
//! # ;
//! ```
//!
//! #### 3. Summarization
//! Abstractive summarization of texts based on the BART encoder-decoder architecture
//! Include techniques such as beam search, top-k and nucleus sampling, temperature setting and repetition penalty.
//!
//! ```ignore
//! # fn main() -> anyhow::Result<()> {
//! # use rust_bert::pipelines::generation_utils::LanguageGenerator;
//! use rust_bert::pipelines::summarization::SummarizationModel;
//!
//! let mut model = SummarizationModel::new(Default::default())?;
//!
//! let input = ["In findings published Tuesday in Cornell University's arXiv by a team of scientists
//! from the University of Montreal and a separate report published Wednesday in Nature Astronomy by a team
//! from University College London (UCL), the presence of water vapour was confirmed in the atmosphere of K2-18b,
//! a planet circling a star in the constellation Leo. This is the first such discovery in a planet in its star's
//! habitable zone — not too hot and not too cold for liquid water to exist. The Montreal team, led by Björn Benneke,
//! used data from the NASA's Hubble telescope to assess changes in the light coming from K2-18b's star as the planet
//! passed between it and Earth. They found that certain wavelengths of light, which are usually absorbed by water,
//! weakened when the planet was in the way, indicating not only does K2-18b have an atmosphere, but the atmosphere
//! contains water in vapour form. The team from UCL then analyzed the Montreal team's data using their own software
//! and confirmed their conclusion. This was not the first time scientists have found signs of water on an exoplanet,
//! but previous discoveries were made on planets with high temperatures or other pronounced differences from Earth.
//! \"This is the first potentially habitable planet where the temperature is right and where we now know there is water,\"
//! said UCL astronomer Angelos Tsiaras. \"It's the best candidate for habitability right now.\" \"It's a good sign\",
//! said Ryan Cloutier of the Harvard–Smithsonian Center for Astrophysics, who was not one of either study's authors.
//! \"Overall,\" he continued, \"the presence of water in its atmosphere certainly improves the prospect of K2-18b being
//! a potentially habitable planet, but further observations will be required to say for sure. \"
//! K2-18b was first identified in 2015 by the Kepler space telescope. It is about 110 light-years from Earth and larger
//! but less dense. Its star, a red dwarf, is cooler than the Sun, but the planet's orbit is much closer, such that a year
//! on K2-18b lasts 33 Earth days. According to The Guardian, astronomers were optimistic that NASA's James Webb space
//! telescope — scheduled for launch in 2021 — and the European Space Agency's 2028 ARIEL program, could reveal more
//! about exoplanets like K2-18b."];
//!
//! let output = model.summarize(&input);
//! # Ok(())
//! # }
//! ```
//! (example from: [WikiNews](https://en.wikinews.org/wiki/Astronomers_find_water_vapour_in_atmosphere_of_exoplanet_K2-18b))
//!
//! Example output: \
//! ```ignore
//! # let output =
//! "Scientists have found water vapour on K2-18b, a planet 110 light-years from Earth.
//! This is the first such discovery in a planet in its star's habitable zone.
//! The planet is not too hot and not too cold for liquid water to exist."
//! # ;
//! ```
//!
//!
//! #### 4. Dialogue Model
//! Conversation model based on Microsoft's [DialoGPT](https://github.com/microsoft/DialoGPT).
//! This pipeline allows the generation of single or multi-turn conversations between a human and a model.
//! The DialoGPT's page states that
//! > The human evaluation results indicate that the response generated from DialoGPT is comparable to human response quality
//! > under a single-turn conversation Turing test. ([DialoGPT repository](https://github.com/microsoft/DialoGPT))
//!
//! The model uses a `ConversationManager` to keep track of active conversations and generate responses to them.
//!
//! ```ignore
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel};
//! let conversation_model = ConversationModel::new(Default::default())?;
//! let mut conversation_manager = ConversationManager::new();
//!
//! let conversation_id =
//! conversation_manager.create("Going to the movies tonight - any suggestions?");
//! let output = conversation_model.generate_responses(&mut conversation_manager);
//! # Ok(())
//! # }
//! ```
//! Example output: \
//! ```ignore
//! # let output =
//! "The Big Lebowski."
//! # ;
//! ```
//!
//! #### 5. Natural Language Generation
//! Generate language based on a prompt. GPT2 and GPT available as base models.
//! Include techniques such as beam search, top-k and nucleus sampling, temperature setting and repetition penalty.
//! Supports batch generation of sentences from several prompts. Sequences will be left-padded with the model's padding token if present, the unknown token otherwise.
//! This may impact the results and it is recommended to submit prompts of similar length for best results. Additional information on the input parameters for generation is provided in this module's documentation.
//!
//! ```ignore
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::pipelines::text_generation::TextGenerationModel;
//! use rust_bert::pipelines::common::ModelType;
//! let mut model = TextGenerationModel::new(Default::default())?;
//! let input_context_1 = "The dog";
//! let input_context_2 = "The cat was";
//!
//! let prefix = None; // Optional prefix to append prompts with, will be excluded from the generated output
//!
//! let output = model.generate(&[input_context_1, input_context_2], prefix);
//! # Ok(())
//! # }
//! ```
//! Example output: \
//! ```ignore
//! # let output =
//! [
//! "The dog's owners, however, did not want to be named. According to the lawsuit, the animal's owner, a 29-year",
//! "The dog has always been part of the family. \"He was always going to be my dog and he was always looking out for me",
//! "The dog has been able to stay in the home for more than three months now. \"It's a very good dog. She's",
//! "The cat was discovered earlier this month in the home of a relative of the deceased. The cat\'s owner, who wished to remain anonymous,",
//! "The cat was pulled from the street by two-year-old Jazmine.\"I didn't know what to do,\" she said",
//! "The cat was attacked by two stray dogs and was taken to a hospital. Two other cats were also injured in the attack and are being treated."
//! ]
//! # ;
//! ```
//!
//! #### 6. Zero-shot classification
//! Performs zero-shot classification on input sentences with provided labels using a model fine-tuned for Natural Language Inference.
//! ```ignore
//! # use rust_bert::pipelines::zero_shot_classification::ZeroShotClassificationModel;
//! # fn main() -> anyhow::Result<()> {
//! let sequence_classification_model = ZeroShotClassificationModel::new(Default::default())?;
//! let input_sentence = "Who are you voting for in 2020?";
//! let input_sequence_2 = "The prime minister has announced a stimulus package which was widely criticized by the opposition.";
//! let candidate_labels = &["politics", "public health", "economics", "sports"];
//! let output = sequence_classification_model.predict_multilabel(
//! &[input_sentence, input_sequence_2],
//! candidate_labels,
//! None,
//! 128,
//! );
//! # Ok(())
//! # }
//! ```
//!
//! outputs:
//! ```ignore
//! # use rust_bert::pipelines::sequence_classification::Label;
//! let output = [
//! [
//! Label {
//! text: "politics".to_string(),
//! score: 0.972,
//! id: 0,
//! sentence: 0,
//! },
//! Label {
//! text: "public health".to_string(),
//! score: 0.032,
//! id: 1,
//! sentence: 0,
//! },
//! Label {
//! text: "economics".to_string(),
//! score: 0.006,
//! id: 2,
//! sentence: 0,
//! },
//! Label {
//! text: "sports".to_string(),
//! score: 0.004,
//! id: 3,
//! sentence: 0,
//! },
//! ],
//! [
//! Label {
//! text: "politics".to_string(),
//! score: 0.975,
//! id: 0,
//! sentence: 1,
//! },
//! Label {
//! text: "economics".to_string(),
//! score: 0.852,
//! id: 2,
//! sentence: 1,
//! },
//! Label {
//! text: "public health".to_string(),
//! score: 0.0818,
//! id: 1,
//! sentence: 1,
//! },
//! Label {
//! text: "sports".to_string(),
//! score: 0.001,
//! id: 3,
//! sentence: 1,
//! },
//! ],
//! ]
//! .to_vec();
//! ```
//!
//! #### 7. Sentiment analysis
//! Predicts the binary sentiment for a sentence. DistilBERT model finetuned on SST-2.
//! ```ignore
//! use rust_bert::pipelines::sentiment::SentimentModel;
//! # fn main() -> anyhow::Result<()> {
//! let sentiment_model = SentimentModel::new(Default::default())?;
//! let input = [
//! "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.",
//! "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...",
//! "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.",
//! ];
//! let output = sentiment_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! (Example courtesy of [IMDb](http://www.imdb.com))
//!
//! Output: \
//! ```ignore
//! # use rust_bert::pipelines::sentiment::Sentiment;
//! # use rust_bert::pipelines::sentiment::SentimentPolarity::{Positive, Negative};
//! # let output =
//! [
//! Sentiment {
//! polarity: Positive,
//! score: 0.998,
//! },
//! Sentiment {
//! polarity: Negative,
//! score: 0.992,
//! },
//! Sentiment {
//! polarity: Positive,
//! score: 0.999,
//! },
//! ]
//! # ;
//! ```
//!
//! #### 8. Named Entity Recognition
//! Extracts entities (Person, Location, Organization, Miscellaneous) from text. The default NER mode is an English BERT cased large model finetuned on CoNNL03, contributed by the [MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz)
//! Additional pre-trained models are available for English, German, Spanish and Dutch.
//! ```ignore
//! use rust_bert::pipelines::ner::NERModel;
//! # fn main() -> anyhow::Result<()> {
//! let ner_model = NERModel::new(Default::default())?;
//! let input = [
//! "My name is Amy. I live in Paris.",
//! "Paris is a city in France.",
//! ];
//! let output = ner_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```ignore
//! # use rust_bert::pipelines::ner::Entity;
//! # use rust_tokenizers::Offset;
//! # let output =
//! [
//! [
//! Entity {
//! word: String::from("Amy"),
//! score: 0.9986,
//! label: String::from("I-PER"),
//! offset: Offset { begin: 11, end: 14 },
//! },
//! Entity {
//! word: String::from("Paris"),
//! score: 0.9985,
//! label: String::from("I-LOC"),
//! offset: Offset { begin: 26, end: 31 },
//! },
//! ],
//! [
//! Entity {
//! word: String::from("Paris"),
//! score: 0.9988,
//! label: String::from("I-LOC"),
//! offset: Offset { begin: 0, end: 5 },
//! },
//! Entity {
//! word: String::from("France"),
//! score: 0.9993,
//! label: String::from("I-LOC"),
//! offset: Offset { begin: 19, end: 25 },
//! },
//! ],
//! ]
//! # ;
//! ```
//!
//! #### 9. Keywords/Keyphrases extraction
//!
//! Extract keywords and keyphrases extractions from input documents. Based on a sentence embedding model
//! to compute the semantic similarity between the full text and word n-grams composing it.
//!
//!```no_run
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::pipelines::keywords_extraction::KeywordExtractionModel;
//! let keyword_extraction_model = KeywordExtractionModel::new(Default::default())?;
//!
//! let input = "Rust is a multi-paradigm, general-purpose programming language. \
//! Rust emphasizes performance, type safety, and concurrency. Rust enforces memory safety—that is, \
//! that all references point to valid memory—without requiring the use of a garbage collector or \
//! reference counting present in other memory-safe languages. To simultaneously enforce \
//! memory safety and prevent concurrent data races, Rust's borrow checker tracks the object lifetime \
//! and variable scope of all references in a program during compilation. Rust is popular for \
//! systems programming but also offers high-level features including functional programming constructs.";
//! // Credits: Wikimedia https://en.wikipedia.org/wiki/Rust_(programming_language)
//! let output = keyword_extraction_model.predict(&[input])?;
//! Ok(())
//! }
//! ```
//! Output:
//! ```no_run
//! # let output =
//! [
//! ("rust", 0.50910604),
//! ("concurrency", 0.33825397),
//! ("languages", 0.28515345),
//! ("compilation", 0.2801403),
//! ("safety", 0.2657791),
//! ]
//! # ;
//! ```
//!
//! #### 10. Part of Speech tagging
//! Extracts Part of Speech tags (Noun, Verb, Adjective...) from text.
//! ```ignore
//! use rust_bert::pipelines::pos_tagging::POSModel;
//! # fn main() -> anyhow::Result<()> {
//! let pos_model = POSModel::new(Default::default())?;
//! let input = ["My name is Bob"];
//! let output = pos_model.encode_as_tensor(&input);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```ignore
//! # use rust_bert::pipelines::pos_tagging::POSTag;
//! # let output =
//! [
//! POSTag {
//! word: String::from("My"),
//! score: 0.1560,
//! label: String::from("PRP"),
//! },
//! POSTag {
//! word: String::from("name"),
//! score: 0.6565,
//! label: String::from("NN"),
//! },
//! POSTag {
//! word: String::from("is"),
//! score: 0.3697,
//! label: String::from("VBZ"),
//! },
//! POSTag {
//! word: String::from("Bob"),
//! score: 0.7460,
//! label: String::from("NNP"),
//! },
//! ]
//! # ;
//! ```
//!
//! #### 11. Sentence embeddings
//!
//! Generate sentence embeddings (vector representation). These can be used for applications including dense information retrieval.
//!```ignore
//! # use rust_bert::pipelines::sentence_embeddings::{SentenceEmbeddingsBuilder, SentenceEmbeddingsModelType};
//! # fn main() -> anyhow::Result<()> {
//! let model = SentenceEmbeddingsBuilder::remote(
//! SentenceEmbeddingsModelType::AllMiniLmL12V2
//! ).create_model()?;
//!
//! let sentences = [
//! "this is an example sentence",
//! "each sentence is converted"
//! ];
//!
//! let output = model.encode(&sentences);
//! # Ok(())
//! # }
//! ```
//! Output:
//! ```ignore
//! # let output =
//! [
//! [-0.000202666, 0.08148022, 0.03136178, 0.002920636],
//! [0.064757116, 0.048519745, -0.01786038, -0.0479775],
//! ]
//! # ;
//! ```
//!
//! # [Tokenizers](https://github.com/huggingface/tokenizers) support
//!
//! The pipelines support both the default [rust-tokenizers](https://github.com/guillaume-be/rust-tokenizers) and
//! Hugging Face's [Tokenizers](https://github.com/huggingface/tokenizers) library. In order to use the latter,
//! the tokenizer needs to be created manually and passed as an argument to the pipeline's `new_with_tokenizer` method.
//!
//! Note that the `special_token_maps` is required to create a `TokenizerOption` from a HFTokenizer. This file is sometimes not provided
//! (the Python Transformers library provides the special token map information as part of the actual tokenizer loaded wrapping the rust-based
//! tokenizer). If that is the case a temporary file with the special token map information can be created as illustrated below:
//! ```no_run
//! fn main() -> anyhow::Result<()> {
//! use std::fs::File;
//! use std::io::Write;
//! use tempfile::TempDir;
//! use rust_bert::pipelines::common::{ModelType, TokenizerOption};
//! use rust_bert::pipelines::text_generation::{TextGenerationConfig, TextGenerationModel};
//! use rust_bert::resources::{RemoteResource, ResourceProvider};
//!
//! let generate_config = TextGenerationConfig {
//! model_type: ModelType::GPT2,
//! ..Default::default()
//! };
//!
//! // Create tokenizer
//! let tmp_dir = TempDir::new()?;
//! let special_token_map_path = tmp_dir.path().join("special_token_map.json");
//! let mut tmp_file = File::create(&special_token_map_path)?;
//! writeln!(
//! tmp_file,
//! r#"{{"bos_token": "<|endoftext|>", "eos_token": "<|endoftext|>", "unk_token": "<|endoftext|>"}}"#
//! )?;
//! let tokenizer_path = RemoteResource::from_pretrained((
//! "gpt2/tokenizer",
//! "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
//! )).get_local_path()?;
//! let tokenizer =
//! TokenizerOption::from_hf_tokenizer_file(tokenizer_path, special_token_map_path)?;
//!
//! // Create model
//! let model = TextGenerationModel::new_with_tokenizer(generate_config, tokenizer)?;
//!
//! let input_context = "The dog";
//! let output = model.generate(&[input_context], None);
//! for sentence in output {
//! println!("{sentence:?}");
//! }
//! Ok(())
//! }
//! ```
pub mod common;
pub mod conversation;
pub mod generation_utils;
pub mod keywords_extraction;
pub mod masked_language;
pub mod ner;
pub mod pos_tagging;
pub mod question_answering;
pub mod sentence_embeddings;
pub mod sentiment;
pub mod sequence_classification;
pub mod summarization;
pub mod text_generation;
pub mod token_classification;
pub mod translation;
pub mod zero_shot_classification;
#[cfg(feature = "onnx")]
pub mod onnx;
#[cfg(feature = "hf-tokenizers")]
pub mod hf_tokenizers;