1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
//! # GPT (Radford et al.)
//!
//! Implementation of the GPT2 language model ([Improving Language Understanding by Generative Pre-Training](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) Radford, Narasimhan, Salimans, Sutskever 2018).
//! The base model is implemented in the `openai_gpt_model::OpenAiGptModel` struct. The model also includes a language model head: `openai_gpt_model::OpenAIGPTLMHeadModel`
//! implementing the common `generation_utils::LanguageGenerator` trait shared between the models used for generation (see `pipelines` for more information).
//!
//! # Model set-up and pre-trained weights loading
//!
//! All models expect the following resources:
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
//! - `GptTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges
//! Pretrained models are available and can be downloaded using RemoteResources.
//!
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! use tch::{nn, Device};
//! # use std::path::PathBuf;
//! use rust_bert::gpt2::Gpt2Config;
//! use rust_bert::openai_gpt::OpenAiGptModel;
//! use rust_bert::resources::{LocalResource, ResourceProvider};
//! use rust_bert::Config;
//! use rust_tokenizers::tokenizer::OpenAiGptTokenizer;
//!
//! let config_resource = LocalResource {
//! local_path: PathBuf::from("path/to/config.json"),
//! };
//! let vocab_resource = LocalResource {
//! local_path: PathBuf::from("path/to/vocab.txt"),
//! };
//! let merges_resource = LocalResource {
//! local_path: PathBuf::from("path/to/vocab.txt"),
//! };
//! let weights_resource = LocalResource {
//! local_path: PathBuf::from("path/to/model.ot"),
//! };
//! let config_path = config_resource.get_local_path()?;
//! let vocab_path = vocab_resource.get_local_path()?;
//! let merges_path = merges_resource.get_local_path()?;
//! let weights_path = weights_resource.get_local_path()?;
//!
//! let device = Device::cuda_if_available();
//! let mut vs = nn::VarStore::new(device);
//! let tokenizer: OpenAiGptTokenizer = OpenAiGptTokenizer::from_file(
//! vocab_path.to_str().unwrap(),
//! merges_path.to_str().unwrap(),
//! true,
//! )?;
//! let config = Gpt2Config::from_file(config_path);
//! let gpt_model = OpenAiGptModel::new(&vs.root(), &config);
//! vs.load(weights_path)?;
//!
//! # Ok(())
//! # }
//! ```
mod openai_gpt_model;
mod transformer;
pub use openai_gpt_model::{
OpenAIGPTLMHeadModel, OpenAIGenerator, OpenAiGptConfig, OpenAiGptConfigResources,
OpenAiGptMergesResources, OpenAiGptModel, OpenAiGptModelOutput, OpenAiGptModelResources,
OpenAiGptVocabResources,
};