1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
//! # BART (Lewis et al.)
//!
//! Implementation of the BART language model ([BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov, Zettlemoyer, 2019).
//! The base model is implemented in the `bart_model::BartModel` struct. The model also includes a language model head: `bart_model::BartForConditionalGeneration`
//! implementing the common `generation_utils::LanguageGenerator` trait shared between the models used for generation (see `pipelines` for more information).
//!
//! # Model set-up and pre-trained weights loading
//!
//! The summarization capabilities are illustrated in `examples/summarization_bart`, run with `cargo run --example summarization_bart`.
//! All models expect the following resources:
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
//! - `RobertaTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges
//! Pretrained models are available and can be downloaded using RemoteResources.
//!
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! #
//! use tch::{nn, Device};
//! # use std::path::PathBuf;
//! use rust_bert::bart::{BartConfig, BartModel};
//! use rust_bert::resources::{LocalResource, ResourceProvider};
//! use rust_bert::Config;
//! use rust_tokenizers::tokenizer::RobertaTokenizer;
//!
//! let config_resource = LocalResource {
//! local_path: PathBuf::from("path/to/config.json"),
//! };
//! let vocab_resource = LocalResource {
//! local_path: PathBuf::from("path/to/vocab.txt"),
//! };
//! let merges_resource = LocalResource {
//! local_path: PathBuf::from("path/to/vocab.txt"),
//! };
//! let weights_resource = LocalResource {
//! local_path: PathBuf::from("path/to/model.ot"),
//! };
//! let config_path = config_resource.get_local_path()?;
//! let vocab_path = vocab_resource.get_local_path()?;
//! let merges_path = merges_resource.get_local_path()?;
//! let weights_path = weights_resource.get_local_path()?;
//!
//! let device = Device::cuda_if_available();
//! let mut vs = nn::VarStore::new(device);
//! let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(
//! vocab_path.to_str().unwrap(),
//! merges_path.to_str().unwrap(),
//! true,
//! false,
//! )?;
//! let config = BartConfig::from_file(config_path);
//! let bart_model = BartModel::new(&vs.root(), &config);
//! vs.load(weights_path)?;
//!
//! # Ok(())
//! # }
//! ```
mod attention;
mod bart_model;
mod decoder;
mod embeddings;
mod encoder;
pub use attention::LayerState;
pub use bart_model::{
BartConfig, BartConfigResources, BartForConditionalGeneration, BartForSequenceClassification,
BartGenerator, BartMergesResources, BartModel, BartModelOutput, BartModelResources,
BartVocabResources,
};
pub(crate) use attention::BartAttention;
pub(crate) use bart_model::{_expand_mask, _make_causal_mask, _prepare_decoder_attention_mask};
pub(crate) use decoder::BartDecoderOutput;
pub(crate) use embeddings::LearnedPositionalEmbedding;
pub(crate) use encoder::BartEncoderOutput;