1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
// Copyright 2020 The Facebook AI Research Team Authors
// Copyright 2020-present, the HuggingFace Inc. team.
// Copyright 2020 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Text generation pipeline
//! Text generation pipeline from a prompt text.
//! Include techniques such as beam search, top-k and nucleus sampling, temperature setting and repetition penalty.
//! By default, the dependencies for this model will be downloaded for a GPT2-medium model.
//! Available architectures for text generation include:
//! - OpenAI GPT
//! - OpenAI GPT2
//! - GPT-Neo
//! - XLNet
//! - Reformer
//!
//! Two APIs exist to build text generation models:
//! - `TextGenerationModel` is a high-level module that exposes text generation capabilities with a set of reasonable defaults
//! - the `LanguageGenerator` trait exposes lower-level text generation capabilities allowing the user to provide additional
//! generation options when building the model (via `GenerateConfig`) and at each query (via `GenerateOptions`). Please check the
//! [`generation_utils` module](../generation_utils/index.html) for more details
//!
//!
//! Customized text generation models models can be loaded by overwriting the resources in the configuration.
//! The dependencies will be downloaded to the user's home directory, e.g. under ~/.cache/.rustbert/gpt2
use tch::Device;
use crate::common::error::RustBertError;
use crate::gpt2::GPT2Generator;
use crate::gpt_j::GptJGenerator;
use crate::gpt_neo::GptNeoGenerator;
use crate::openai_gpt::OpenAIGenerator;
use crate::pipelines::common::{ModelResource, ModelType, TokenizerOption};
use crate::pipelines::generation_utils::{GenerateConfig, GenerateOptions, LanguageGenerator};
use crate::reformer::ReformerGenerator;
use crate::resources::ResourceProvider;
use crate::t5::T5Generator;
use crate::xlnet::XLNetGenerator;
#[cfg(feature = "onnx")]
use crate::pipelines::onnx::ONNXCausalGenerator;
#[cfg(feature = "remote")]
use crate::{
gpt2::{Gpt2ConfigResources, Gpt2MergesResources, Gpt2ModelResources, Gpt2VocabResources},
resources::RemoteResource,
};
/// # Configuration for text generation
/// Contains information regarding the model to load, mirrors the GenerateConfig, with a
/// different set of default parameters and sets the device to place the model on.
pub struct TextGenerationConfig {
/// Model type
pub model_type: ModelType,
/// Model weights resource (default: pretrained BART model on CNN-DM)
pub model_resource: ModelResource,
/// Config resource (default: pretrained BART model on CNN-DM)
pub config_resource: Box<dyn ResourceProvider + Send>,
/// Vocab resource (default: pretrained BART model on CNN-DM)
pub vocab_resource: Box<dyn ResourceProvider + Send>,
/// Merges resource (default: pretrained BART model on CNN-DM)
pub merges_resource: Option<Box<dyn ResourceProvider + Send>>,
/// Minimum sequence length (default: 0)
pub min_length: i64,
/// Maximum sequence length (default: 56)
pub max_length: Option<i64>,
/// Sampling flag. If true, will perform top-k and/or nucleus sampling on generated tokens, otherwise greedy (deterministic) decoding (default: true)
pub do_sample: bool,
/// Early stopping flag indicating if the beam search should stop as soon as `num_beam` hypotheses have been generated (default: false)
pub early_stopping: bool,
/// Number of beams for beam search (default: 5)
pub num_beams: i64,
/// Temperature setting. Values higher than 1 will improve originality at the risk of reducing relevance (default: 1.0)
pub temperature: f64,
/// Top_k values for sampling tokens. Value higher than 0 will enable the feature (default: 0)
pub top_k: i64,
/// Top_p value for [Nucleus sampling, Holtzman et al.](http://arxiv.org/abs/1904.09751). Keep top tokens until cumulative probability reaches top_p (default: 0.9)
pub top_p: f64,
/// Repetition penalty (mostly useful for CTRL decoders). Values higher than 1 will penalize tokens that have been already generated. (default: 1.0)
pub repetition_penalty: f64,
/// Exponential penalty based on the length of the hypotheses generated (default: 1.0)
pub length_penalty: f64,
/// Number of allowed repetitions of n-grams. Values higher than 0 turn on this feature and will prevent repeats of n-grams with a length equal or greater to this value (default: 0)
pub no_repeat_ngram_size: i64,
/// Number of sequences to return for each prompt text (default: 1)
pub num_return_sequences: i64,
/// Number of beam groups for diverse beam generation. If provided and higher than 1, will split the beams into beam subgroups leading to more diverse generation.
pub num_beam_groups: Option<i64>,
/// Diversity penalty for diverse beam search. High values will enforce more difference between beam groups (default: 5.5)
pub diversity_penalty: Option<f64>,
/// Device to place the model on (default: CUDA/GPU when available)
pub device: Device,
}
impl TextGenerationConfig {
/// Instantiate a new text generation configuration of the supplied type.
///
/// # Arguments
///
/// * `model_type` - `ModelType` indicating the model type to load (must match with the actual data to be loaded!)
/// * model_resource - The `ModelResources` pointing to the model to load (e.g. model.ot)
/// * config_resource - The `ResourceProvider` pointing to the model configuration to load (e.g. config.json)
/// * vocab_resource - The `ResourceProvider` pointing to the tokenizer's vocabulary to load (e.g. vocab.txt/vocab.json)
/// * merges_resource - The `ResourceProvider` pointing to the tokenizer's merge file or SentencePiece model to load (e.g. merges.txt).
pub fn new<RC, RV>(
model_type: ModelType,
model_resource: ModelResource,
config_resource: RC,
vocab_resource: RV,
merges_resource: Option<RV>,
) -> TextGenerationConfig
where
RC: ResourceProvider + Send + 'static,
RV: ResourceProvider + Send + 'static,
{
TextGenerationConfig {
model_type,
model_resource,
config_resource: Box::new(config_resource),
vocab_resource: Box::new(vocab_resource),
merges_resource: merges_resource.map(|r| Box::new(r) as Box<_>),
min_length: 0,
max_length: Some(56),
do_sample: true,
early_stopping: true,
num_beams: 5,
temperature: 1.0,
top_k: 0,
top_p: 0.9,
repetition_penalty: 1.0,
length_penalty: 1.0,
no_repeat_ngram_size: 0,
num_return_sequences: 1,
num_beam_groups: None,
diversity_penalty: None,
device: Device::cuda_if_available(),
}
}
}
#[cfg(feature = "remote")]
impl Default for TextGenerationConfig {
fn default() -> TextGenerationConfig {
TextGenerationConfig::new(
ModelType::GPT2,
ModelResource::Torch(Box::new(RemoteResource::from_pretrained(
Gpt2ModelResources::GPT2_MEDIUM,
))),
RemoteResource::from_pretrained(Gpt2ConfigResources::GPT2_MEDIUM),
RemoteResource::from_pretrained(Gpt2VocabResources::GPT2_MEDIUM),
Some(RemoteResource::from_pretrained(
Gpt2MergesResources::GPT2_MEDIUM,
)),
)
}
}
impl From<TextGenerationConfig> for GenerateConfig {
fn from(config: TextGenerationConfig) -> GenerateConfig {
GenerateConfig {
model_type: config.model_type,
model_resource: config.model_resource,
config_resource: config.config_resource,
merges_resource: config.merges_resource,
vocab_resource: config.vocab_resource,
min_length: config.min_length,
max_length: config.max_length,
do_sample: config.do_sample,
early_stopping: config.early_stopping,
num_beams: config.num_beams,
temperature: config.temperature,
top_k: config.top_k,
top_p: config.top_p,
repetition_penalty: config.repetition_penalty,
length_penalty: config.length_penalty,
no_repeat_ngram_size: config.no_repeat_ngram_size,
num_return_sequences: config.num_return_sequences,
num_beam_groups: config.num_beam_groups,
diversity_penalty: config.diversity_penalty,
device: config.device,
}
}
}
/// # Abstraction that holds one particular text generation model, for any of the supported models
pub enum TextGenerationOption {
/// Text Generator based on GPT2 model
GPT2(GPT2Generator),
/// Text Generator based on GPT model
GPT(OpenAIGenerator),
/// Text Generator based on GPT-Neo model
GPTNeo(GptNeoGenerator),
/// Text Generator based on GPT-J model
GPTJ(GptJGenerator),
/// Text Generator based on XLNet model
XLNet(XLNetGenerator),
/// Text Generator based on Reformer model
Reformer(ReformerGenerator),
/// Text Generator based on T5 model
T5(T5Generator),
/// ONNX model for text generation
#[cfg(feature = "onnx")]
ONNX(ONNXCausalGenerator),
}
impl TextGenerationOption {
pub fn new(config: TextGenerationConfig) -> Result<Self, RustBertError> {
match (config.model_type, &config.model_resource) {
#[cfg(feature = "onnx")]
(_, &ModelResource::ONNX(_)) => Ok(TextGenerationOption::ONNX(
ONNXCausalGenerator::new(config.into(), None, None)?,
)),
(ModelType::GPT2, _) => Ok(TextGenerationOption::GPT2(GPT2Generator::new(
config.into(),
)?)),
(ModelType::OpenAiGpt, _) => Ok(TextGenerationOption::GPT(OpenAIGenerator::new(
config.into(),
)?)),
(ModelType::XLNet, _) => Ok(TextGenerationOption::XLNet(XLNetGenerator::new(
config.into(),
)?)),
(ModelType::Reformer, _) => Ok(TextGenerationOption::Reformer(ReformerGenerator::new(
config.into(),
)?)),
(ModelType::GPTNeo, _) => Ok(TextGenerationOption::GPTNeo(GptNeoGenerator::new(
config.into(),
)?)),
(ModelType::GPTJ, _) => Ok(TextGenerationOption::GPTJ(GptJGenerator::new(
config.into(),
)?)),
(ModelType::T5, _) => Ok(TextGenerationOption::T5(T5Generator::new(config.into())?)),
_ => Err(RustBertError::InvalidConfigurationError(format!(
"Text generation not implemented for {:?}!",
config.model_type
))),
}
}
pub fn new_with_tokenizer(
config: TextGenerationConfig,
tokenizer: TokenizerOption,
) -> Result<Self, RustBertError> {
match (config.model_type, &config.model_resource) {
#[cfg(feature = "onnx")]
(_, &ModelResource::ONNX(_)) => Ok(TextGenerationOption::ONNX(
ONNXCausalGenerator::new_with_tokenizer(config.into(), tokenizer, None, None)?,
)),
(ModelType::GPT2, _) => Ok(TextGenerationOption::GPT2(
GPT2Generator::new_with_tokenizer(config.into(), tokenizer)?,
)),
(ModelType::OpenAiGpt, _) => Ok(TextGenerationOption::GPT(
OpenAIGenerator::new_with_tokenizer(config.into(), tokenizer)?,
)),
(ModelType::XLNet, _) => Ok(TextGenerationOption::XLNet(
XLNetGenerator::new_with_tokenizer(config.into(), tokenizer)?,
)),
(ModelType::Reformer, _) => Ok(TextGenerationOption::Reformer(
ReformerGenerator::new_with_tokenizer(config.into(), tokenizer)?,
)),
(ModelType::GPTNeo, _) => Ok(TextGenerationOption::GPTNeo(
GptNeoGenerator::new_with_tokenizer(config.into(), tokenizer)?,
)),
(ModelType::GPTJ, _) => Ok(TextGenerationOption::GPTJ(
GptJGenerator::new_with_tokenizer(config.into(), tokenizer)?,
)),
(ModelType::T5, _) => Ok(TextGenerationOption::T5(T5Generator::new_with_tokenizer(
config.into(),
tokenizer,
)?)),
_ => Err(RustBertError::InvalidConfigurationError(format!(
"Text generation not implemented for {:?}!",
config.model_type
))),
}
}
/// Returns the `ModelType` for this TextGenerationOption
pub fn model_type(&self) -> ModelType {
match *self {
Self::GPT(_) => ModelType::OpenAiGpt,
Self::GPT2(_) => ModelType::GPT2,
Self::GPTNeo(_) => ModelType::GPTNeo,
Self::GPTJ(_) => ModelType::GPTJ,
Self::XLNet(_) => ModelType::XLNet,
Self::Reformer(_) => ModelType::Reformer,
Self::T5(_) => ModelType::T5,
#[cfg(feature = "onnx")]
Self::ONNX(_) => ModelType::ONNX,
}
}
/// Interface method to access tokenizer
pub fn get_tokenizer(&self) -> &TokenizerOption {
match self {
Self::GPT(model_ref) => model_ref.get_tokenizer(),
Self::GPT2(model_ref) => model_ref.get_tokenizer(),
Self::GPTNeo(model_ref) => model_ref.get_tokenizer(),
Self::GPTJ(model_ref) => model_ref.get_tokenizer(),
Self::XLNet(model_ref) => model_ref.get_tokenizer(),
Self::Reformer(model_ref) => model_ref.get_tokenizer(),
Self::T5(model_ref) => model_ref.get_tokenizer(),
#[cfg(feature = "onnx")]
Self::ONNX(model_ref) => model_ref.get_tokenizer(),
}
}
/// Interface method to access tokenizer
pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption {
match self {
Self::GPT(model_ref) => model_ref.get_tokenizer_mut(),
Self::GPT2(model_ref) => model_ref.get_tokenizer_mut(),
Self::GPTNeo(model_ref) => model_ref.get_tokenizer_mut(),
Self::GPTJ(model_ref) => model_ref.get_tokenizer_mut(),
Self::XLNet(model_ref) => model_ref.get_tokenizer_mut(),
Self::Reformer(model_ref) => model_ref.get_tokenizer_mut(),
Self::T5(model_ref) => model_ref.get_tokenizer_mut(),
#[cfg(feature = "onnx")]
Self::ONNX(model_ref) => model_ref.get_tokenizer_mut(),
}
}
/// Interface method to generate() of the particular models.
pub fn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
min_length: Option<i64>,
max_length: Option<i64>,
) -> Vec<Vec<i64>>
where
S: AsRef<str> + Sync,
{
let generate_options = Some(GenerateOptions {
min_length,
max_length,
..Default::default()
});
match *self {
Self::GPT(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
Self::GPT2(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
Self::GPTNeo(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
Self::GPTJ(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
Self::XLNet(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
Self::Reformer(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
Self::T5(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
#[cfg(feature = "onnx")]
Self::ONNX(ref model) => model
.generate_indices(prompt_texts, generate_options)
.into_iter()
.map(|output| output.indices)
.collect(),
}
}
pub fn half(&mut self) -> Result<(), RustBertError> {
match self {
Self::GPT(model_ref) => model_ref.half(),
Self::GPT2(model_ref) => model_ref.half(),
Self::GPTNeo(model_ref) => model_ref.half(),
Self::GPTJ(model_ref) => model_ref.half(),
Self::XLNet(model_ref) => model_ref.half(),
Self::Reformer(model_ref) => model_ref.half(),
Self::T5(model_ref) => model_ref.half(),
#[cfg(feature = "onnx")]
Self::ONNX(_) => Err(RustBertError::OrtError(
"Type casting not supported for ONNX models.".to_string(),
)),
}
}
pub fn float(&mut self) -> Result<(), RustBertError> {
match self {
Self::GPT(model_ref) => model_ref.float(),
Self::GPT2(model_ref) => model_ref.float(),
Self::GPTNeo(model_ref) => model_ref.float(),
Self::GPTJ(model_ref) => model_ref.float(),
Self::XLNet(model_ref) => model_ref.float(),
Self::Reformer(model_ref) => model_ref.float(),
Self::T5(model_ref) => model_ref.float(),
#[cfg(feature = "onnx")]
Self::ONNX(_) => Err(RustBertError::OrtError(
"Type casting not supported for ONNX models.".to_string(),
)),
}
}
pub fn set_device(&mut self, device: Device) -> Result<(), RustBertError> {
match self {
Self::GPT(model_ref) => model_ref.set_device(device),
Self::GPT2(model_ref) => model_ref.set_device(device),
Self::GPTNeo(model_ref) => model_ref.set_device(device),
Self::GPTJ(model_ref) => model_ref.set_device(device),
Self::XLNet(model_ref) => model_ref.set_device(device),
Self::Reformer(model_ref) => model_ref.set_device(device),
Self::T5(model_ref) => model_ref.set_device(device),
#[cfg(feature = "onnx")]
Self::ONNX(_) => Err(RustBertError::OrtError(
"Device assignment not supported for ONNX models.".to_string(),
)),
}
}
}
/// # TextGenerationModel to generate texts from a prompt
pub struct TextGenerationModel {
model: TextGenerationOption,
prefix: Option<String>,
prefix_length: Option<i64>,
min_length: i64,
max_length: Option<i64>,
}
impl TextGenerationModel {
/// Build a new `TextGenerationModel`
///
/// # Arguments
///
/// * `generation_config` - `GenerateConfig` object containing the resource references (model, vocabulary, configuration), generation options and device placement (CPU/GPU)
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::common::ModelType;
/// use rust_bert::pipelines::text_generation::TextGenerationModel;
///
/// let generation_model = TextGenerationModel::new(Default::default())?;
/// # Ok(())
/// # }
/// ```
pub fn new(
generation_config: TextGenerationConfig,
) -> Result<TextGenerationModel, RustBertError> {
let (prefix, min_length, max_length) =
TextGenerationModel::get_prefix_min_max_length(&generation_config);
let model = TextGenerationOption::new(generation_config)?;
let prefix_length = prefix
.as_ref()
.map(|prefix| model.get_tokenizer().tokenize(prefix).len() as i64);
Ok(TextGenerationModel {
model,
prefix,
prefix_length,
min_length,
max_length,
})
}
/// Build a new `TextGenerationModel` with a given tokenizer
///
/// # Arguments
///
/// * `generation_config` - `GenerateConfig` object containing the resource references (model, vocabulary, configuration), generation options and device placement (CPU/GPU)
/// * `tokenizer` - `TokenizerOption` tokenizer to use for text generation
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::common::{ModelType, TokenizerOption};
/// use rust_bert::pipelines::text_generation::TextGenerationModel;
///
/// let tokenizer = TokenizerOption::from_file(
/// ModelType::GPT2,
/// "path/to/vocab.json",
/// Some("path/to/merges.txt"),
/// false,
/// None,
/// None,
/// )?;
/// let generation_model = TextGenerationModel::new_with_tokenizer(Default::default(), tokenizer)?;
/// # Ok(())
/// # }
/// ```
pub fn new_with_tokenizer(
generation_config: TextGenerationConfig,
tokenizer: TokenizerOption,
) -> Result<TextGenerationModel, RustBertError> {
let (prefix, min_length, max_length) =
TextGenerationModel::get_prefix_min_max_length(&generation_config);
let model = TextGenerationOption::new_with_tokenizer(generation_config, tokenizer)?;
let prefix_length = prefix
.as_ref()
.map(|prefix| model.get_tokenizer().tokenize(prefix).len() as i64);
Ok(TextGenerationModel {
model,
prefix,
prefix_length,
min_length,
max_length,
})
}
fn get_prefix_min_max_length(
generation_config: &TextGenerationConfig,
) -> (Option<String>, i64, Option<i64>) {
let prefix = match generation_config.model_type {
ModelType::XLNet => Some(
"In 1991, the remains of Russian Tsar Nicholas II and his family \
(except for Alexei and Maria) are discovered. \
The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the \
remainder of the story. 1883 Western Siberia, \
a young Grigori Rasputin is asked by his father and a group of men to perform magic. \
Rasputin has a vision and denounces one of the men as a horse thief. Although his \
father initially slaps him for making such an accusation, Rasputin watches as the \
man is chased outside and beaten. Twenty years later, Rasputin sees a vision of \
the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, \
with people, even a bishop, begging for his blessing. <eod> </s> <eos>"
.to_string(),
),
_ => None,
};
let min_length = generation_config.min_length;
let max_length = generation_config.max_length;
(prefix, min_length, max_length)
}
pub fn get_tokenizer(&self) -> &TokenizerOption {
self.model.get_tokenizer()
}
pub fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption {
self.model.get_tokenizer_mut()
}
pub fn half(&mut self) -> Result<(), RustBertError> {
self.model.half()
}
pub fn float(&mut self) -> Result<(), RustBertError> {
self.model.float()
}
pub fn set_device(&mut self, device: Device) -> Result<(), RustBertError> {
self.model.set_device(device)
}
/// Generate texts from provided prompts
///
/// # Arguments
///
/// * `input` - `&[&str]` Array of texts to summarize.
/// * `prefix` - `impl Into<Option<&'a str>>`: Optional string to pass as a prefix for generation. Will be excluded from generated sequences.
///
/// # Returns
/// * `Vec<String>` Generated texts
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::common::ModelType;
/// use rust_bert::pipelines::text_generation::TextGenerationModel;
///
/// let model = TextGenerationModel::new(Default::default())?;
///
/// let input = ["The dog", "The cat was"];
/// let prefix = None;
///
/// let output = model.generate(&input, prefix);
/// # Ok(())
/// # }
/// ```
pub fn generate<'a, S>(&self, texts: &[S], prefix: impl Into<Option<&'a str>>) -> Vec<String>
where
S: AsRef<str> + Sync,
{
let (prefix, prefix_length) = match (prefix.into(), &self.prefix) {
(Some(query_prefix), _) => (
Some(query_prefix),
Some(self.model.get_tokenizer().tokenize(query_prefix).len() as i64),
),
(None, Some(pipeline_prefix)) => (Some(pipeline_prefix.as_str()), self.prefix_length),
(None, None) => (None, None),
};
let generated_indices = match (prefix, prefix_length) {
(None, _) => self.model.generate_indices(Some(texts), None, None),
(Some(prefix), Some(prefix_length)) => {
let texts = texts
.as_ref()
.iter()
.map(|text| format!("{} {}", prefix, text.as_ref()))
.collect::<Vec<String>>();
self.model.generate_indices(
Some(&texts),
Some(self.min_length + prefix_length),
self.max_length.map(|max_length| max_length + prefix_length),
)
}
_ => panic!("Prefix length not defined but prefix provided!"),
};
let mut output = Vec::with_capacity(generated_indices.len());
for generated_sequence in generated_indices {
output.push(self.model.get_tokenizer().decode(
&generated_sequence[prefix_length.unwrap_or(0) as usize..],
true,
true,
));
}
output
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[ignore] // no need to run, compilation is enough to verify it is Send
fn test() {
let config = TextGenerationConfig::default();
let _: Box<dyn Send> = Box::new(TextGenerationModel::new(config));
}
}