1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::bert::{BertConfig, BertEmbedding};
use crate::common::dropout::Dropout;
use crate::common::embeddings::process_ids_embeddings_pair;
use crate::RustBertError;
use std::borrow::Borrow;
use tch::nn::{embedding, EmbeddingConfig};
use tch::{nn, Kind, Tensor};
#[derive(Debug)]
/// # BertEmbeddings implementation for RoBERTa model
/// Implementation of the `BertEmbedding` trait for RoBERTa models
pub struct RobertaEmbeddings {
word_embeddings: nn::Embedding,
position_embeddings: nn::Embedding,
token_type_embeddings: nn::Embedding,
layer_norm: nn::LayerNorm,
dropout: Dropout,
padding_index: i64,
}
impl RobertaEmbeddings {
fn create_position_ids_from_input_ids(&self, x: &Tensor) -> Tensor {
let mask: Tensor = x.ne(self.padding_index).to_kind(Kind::Int64);
mask.cumsum(1, Kind::Int64) * mask + self.padding_index
}
fn create_position_ids_from_embeddings(&self, x: &Tensor) -> Tensor {
let input_shape = x.size();
let input_shape = vec![input_shape[0], input_shape[1]];
let position_ids: Tensor = Tensor::arange_start(
self.padding_index + 1,
input_shape[0],
(Kind::Int64, x.device()),
);
position_ids.unsqueeze(0).expand(&input_shape, true)
}
}
impl BertEmbedding for RobertaEmbeddings {
/// Build a new `RobertaEmbeddings`
///
/// # Arguments
///
/// * `p` - Variable store path for the root of the BertEmbeddings model
/// * `config` - `BertConfig` object defining the model architecture and vocab/hidden size
///
/// # Example
///
/// ```no_run
/// use rust_bert::bert::{BertConfig, BertEmbedding};
/// use rust_bert::roberta::RobertaEmbeddings;
/// use rust_bert::Config;
/// use std::path::Path;
/// use tch::{nn, Device};
///
/// let config_path = Path::new("path/to/config.json");
/// let device = Device::Cpu;
/// let p = nn::VarStore::new(device);
/// let config = BertConfig::from_file(config_path);
/// let robert_embeddings = RobertaEmbeddings::new(&p.root() / "bert_embeddings", &config);
/// ```
fn new<'p, P>(p: P, config: &BertConfig) -> RobertaEmbeddings
where
P: Borrow<nn::Path<'p>>,
{
let p = p.borrow();
let embedding_config = EmbeddingConfig {
padding_idx: 1,
..Default::default()
};
let word_embeddings: nn::Embedding = embedding(
p / "word_embeddings",
config.vocab_size,
config.hidden_size,
embedding_config,
);
let position_embeddings: nn::Embedding = embedding(
p / "position_embeddings",
config.max_position_embeddings,
config.hidden_size,
Default::default(),
);
let token_type_embeddings: nn::Embedding = embedding(
p / "token_type_embeddings",
config.type_vocab_size,
config.hidden_size,
Default::default(),
);
let layer_norm_config = nn::LayerNormConfig {
eps: 1e-12,
..Default::default()
};
let layer_norm: nn::LayerNorm =
nn::layer_norm(p / "LayerNorm", vec![config.hidden_size], layer_norm_config);
let dropout: Dropout = Dropout::new(config.hidden_dropout_prob);
RobertaEmbeddings {
word_embeddings,
position_embeddings,
token_type_embeddings,
layer_norm,
dropout,
padding_index: 1,
}
}
/// Forward pass through the embedding layer.
/// This differs from the original BERT embeddings in how the position ids are calculated when not provided.
///
/// # Arguments
///
/// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see *input_embeds*)
/// * `token_type_ids` -Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
/// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
/// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see *input_ids*)
/// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
///
/// # Returns
///
/// * `embedded_output` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*)
///
/// # Example
///
/// ```no_run
/// # use rust_bert::bert::{BertConfig, BertEmbedding};
/// # use tch::{nn, Device, Tensor, no_grad};
/// # use rust_bert::Config;
/// # use std::path::Path;
/// # use tch::kind::Kind::Int64;
/// use rust_bert::roberta::RobertaEmbeddings;
/// # let config_path = Path::new("path/to/config.json");
/// # let vocab_path = Path::new("path/to/vocab.txt");
/// # let device = Device::Cpu;
/// # let vs = nn::VarStore::new(device);
/// # let config = BertConfig::from_file(config_path);
/// # let roberta_embeddings = RobertaEmbeddings::new(&vs.root(), &config);
/// let (batch_size, sequence_length) = (64, 128);
/// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
/// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
/// let position_ids = Tensor::arange(sequence_length, (Int64, device))
/// .expand(&[batch_size, sequence_length], true);
///
/// let embedded_output = no_grad(|| {
/// roberta_embeddings
/// .forward_t(
/// Some(&input_tensor),
/// Some(&token_type_ids),
/// Some(&position_ids),
/// None,
/// false,
/// )
/// .unwrap()
/// });
/// ```
fn forward_t(
&self,
input_ids: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
train: bool,
) -> Result<Tensor, RustBertError> {
let (calc_input_embeddings, input_shape, _) =
process_ids_embeddings_pair(input_ids, input_embeds, &self.word_embeddings)?;
let input_embeddings =
input_embeds.unwrap_or_else(|| calc_input_embeddings.as_ref().unwrap());
let calc_position_ids = if position_ids.is_none() {
Some(match input_ids {
Some(value) => self.create_position_ids_from_input_ids(value),
None => self.create_position_ids_from_embeddings(input_embeds.unwrap()),
})
} else {
None
};
let calc_token_type_ids = if token_type_ids.is_none() {
Some(Tensor::zeros(
&input_shape,
(Kind::Int64, input_embeddings.device()),
))
} else {
None
};
let position_ids = position_ids.unwrap_or_else(|| calc_position_ids.as_ref().unwrap());
let token_type_ids =
token_type_ids.unwrap_or_else(|| calc_token_type_ids.as_ref().unwrap());
let position_embeddings = position_ids.apply(&self.position_embeddings);
let token_type_embeddings = token_type_ids.apply(&self.token_type_embeddings);
let input_embeddings: Tensor =
input_embeddings + position_embeddings + token_type_embeddings;
Ok(input_embeddings
.apply(&self.layer_norm)
.apply_t(&self.dropout, train))
}
}