1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Part Of Speech pipeline
//! Extracts Part of Speech tags (Noun, Verb, Adjective...) from text.
//! A lightweight pretrained model using MobileBERT is available for English.
//!
//! The example below illustrate how to run the model:
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::pipelines::pos_tagging::POSModel;
//! let pos_model = POSModel::new(Default::default())?;
//!
//! let input = ["My name is Amélie. How are you?"];
//! let output = pos_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```no_run
//! # use rust_bert::pipelines::pos_tagging::POSTag;
//! # let output =
//! [[
//! POSTag {
//! word: String::from("My"),
//! score: 0.2465,
//! label: String::from("PRP"),
//! },
//! POSTag {
//! word: String::from("name"),
//! score: 0.8551,
//! label: String::from("NN"),
//! },
//! POSTag {
//! word: String::from("is"),
//! score: 0.8072,
//! label: String::from("VBZ"),
//! },
//! POSTag {
//! word: String::from("Amélie"),
//! score: 0.8102,
//! label: String::from("NNP"),
//! },
//! POSTag {
//! word: String::from("."),
//! score: 1.0,
//! label: String::from("."),
//! },
//! POSTag {
//! word: String::from("How"),
//! score: 0.4994,
//! label: String::from("WRB"),
//! },
//! POSTag {
//! word: String::from("are"),
//! score: 0.928,
//! label: String::from("VBP"),
//! },
//! POSTag {
//! word: String::from("you"),
//! score: 0.3690,
//! label: String::from("NN"),
//! },
//! POSTag {
//! word: String::from("?"),
//! score: 1.0,
//! label: String::from("."),
//! },
//! ]]
//! # ;
//! ```
//!
//! To run the pipeline for another language, change the POSModel configuration from its default (see the NER pipeline for an illustration).
use crate::common::error::RustBertError;
use crate::pipelines::token_classification::{TokenClassificationConfig, TokenClassificationModel};
use serde::{Deserialize, Serialize};
#[cfg(feature = "remote")]
use {
crate::{
mobilebert::{
MobileBertConfigResources, MobileBertModelResources, MobileBertVocabResources,
},
pipelines::{common::ModelType, token_classification::LabelAggregationOption},
resources::RemoteResource,
},
tch::Device,
};
#[derive(Debug, Serialize, Deserialize)]
/// # Part of Speech tag
pub struct POSTag {
/// String representation of the word
pub word: String,
/// Confidence score
pub score: f64,
/// Part-of-speech label (e.g. NN, VB...)
pub label: String,
}
//type alias for some backward compatibility
pub struct POSConfig {
token_classification_config: TokenClassificationConfig,
}
#[cfg(feature = "remote")]
impl Default for POSConfig {
/// Provides a Part of speech tagging model (English)
fn default() -> POSConfig {
POSConfig {
token_classification_config: TokenClassificationConfig {
model_type: ModelType::MobileBert,
model_resource: Box::new(RemoteResource::from_pretrained(
MobileBertModelResources::MOBILEBERT_ENGLISH_POS,
)),
config_resource: Box::new(RemoteResource::from_pretrained(
MobileBertConfigResources::MOBILEBERT_ENGLISH_POS,
)),
vocab_resource: Box::new(RemoteResource::from_pretrained(
MobileBertVocabResources::MOBILEBERT_ENGLISH_POS,
)),
merges_resource: None,
lower_case: true,
strip_accents: Some(true),
add_prefix_space: None,
device: Device::cuda_if_available(),
label_aggregation_function: LabelAggregationOption::First,
batch_size: 64,
},
}
}
}
impl From<POSConfig> for TokenClassificationConfig {
fn from(pos_config: POSConfig) -> Self {
pos_config.token_classification_config
}
}
/// # POSModel to extract Part of Speech tags
pub struct POSModel {
token_classification_model: TokenClassificationModel,
}
impl POSModel {
/// Build a new `POSModel`
///
/// # Arguments
///
/// * `pos_config` - `POSConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::pos_tagging::POSModel;
///
/// let pos_model = POSModel::new(Default::default())?;
/// # Ok(())
/// # }
/// ```
pub fn new(pos_config: POSConfig) -> Result<POSModel, RustBertError> {
let model = TokenClassificationModel::new(pos_config.into())?;
Ok(POSModel {
token_classification_model: model,
})
}
/// Extract entities from a text
///
/// # Arguments
///
/// * `input` - `&[&str]` Array of texts to extract entities from.
///
/// # Returns
///
/// * `Vec<Vec<POSTag>>` containing Part of Speech tags for the inputs provided
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// # use rust_bert::pipelines::pos_tagging::POSModel;
///
/// let pos_model = POSModel::new(Default::default())?;
/// let input = [
/// "My name is Amy. I live in Paris.",
/// "Paris is a city in France.",
/// ];
/// let output = pos_model.predict(&input);
/// # Ok(())
/// # }
/// ```
pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<POSTag>>
where
S: AsRef<str>,
{
self.token_classification_model
.predict(input, true, false)
.into_iter()
.map(|sequence_tokens| {
sequence_tokens
.into_iter()
.map(|mut token| {
if (Self::is_punctuation(token.text.as_str()))
& ((token.score < 0.5) | token.score.is_nan())
{
token.label = String::from(".");
token.score = 1f64;
};
token
})
.map(|token| POSTag {
word: token.text,
score: token.score,
label: token.label,
})
.collect::<Vec<POSTag>>()
})
.collect::<Vec<Vec<POSTag>>>()
}
fn is_punctuation(string: &str) -> bool {
string.chars().all(|c| c.is_ascii_punctuation())
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
#[ignore] // no need to run, compilation is enough to verify it is Send
fn test() {
let config = POSConfig::default();
let _: Box<dyn Send> = Box::new(POSModel::new(config));
}
}