1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Part Of Speech pipeline
//! Extracts Part of Speech tags (Noun, Verb, Adjective...) from text.
//! A lightweight pretrained model using MobileBERT is available for English.
//!
//! The example below illustrate how to run the model:
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::pipelines::pos_tagging::POSModel;
//! let pos_model = POSModel::new(Default::default())?;
//!
//! let input = ["My name is Amélie. How are you?"];
//! let output = pos_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```no_run
//! # use rust_bert::pipelines::pos_tagging::POSTag;
//! # let output =
//! [[
//!     POSTag {
//!         word: String::from("My"),
//!         score: 0.2465,
//!         label: String::from("PRP"),
//!     },
//!     POSTag {
//!         word: String::from("name"),
//!         score: 0.8551,
//!         label: String::from("NN"),
//!     },
//!     POSTag {
//!         word: String::from("is"),
//!         score: 0.8072,
//!         label: String::from("VBZ"),
//!     },
//!     POSTag {
//!         word: String::from("Amélie"),
//!         score: 0.8102,
//!         label: String::from("NNP"),
//!     },
//!     POSTag {
//!         word: String::from("."),
//!         score: 1.0,
//!         label: String::from("."),
//!     },
//!     POSTag {
//!         word: String::from("How"),
//!         score: 0.4994,
//!         label: String::from("WRB"),
//!     },
//!     POSTag {
//!         word: String::from("are"),
//!         score: 0.928,
//!         label: String::from("VBP"),
//!     },
//!     POSTag {
//!         word: String::from("you"),
//!         score: 0.3690,
//!         label: String::from("NN"),
//!     },
//!     POSTag {
//!         word: String::from("?"),
//!         score: 1.0,
//!         label: String::from("."),
//!     },
//! ]]
//! # ;
//! ```
//!
//! To run the pipeline for another language, change the POSModel configuration from its default (see the NER pipeline for an illustration).

use crate::common::error::RustBertError;
use crate::pipelines::token_classification::{TokenClassificationConfig, TokenClassificationModel};
use serde::{Deserialize, Serialize};

#[cfg(feature = "remote")]
use {
    crate::{
        mobilebert::{
            MobileBertConfigResources, MobileBertModelResources, MobileBertVocabResources,
        },
        pipelines::{common::ModelType, token_classification::LabelAggregationOption},
        resources::RemoteResource,
    },
    tch::Device,
};

#[derive(Debug, Serialize, Deserialize)]
/// # Part of Speech tag
pub struct POSTag {
    /// String representation of the word
    pub word: String,
    /// Confidence score
    pub score: f64,
    /// Part-of-speech label (e.g. NN, VB...)
    pub label: String,
}

//type alias for some backward compatibility
pub struct POSConfig {
    token_classification_config: TokenClassificationConfig,
}

#[cfg(feature = "remote")]
impl Default for POSConfig {
    /// Provides a Part of speech tagging model (English)
    fn default() -> POSConfig {
        POSConfig {
            token_classification_config: TokenClassificationConfig {
                model_type: ModelType::MobileBert,
                model_resource: Box::new(RemoteResource::from_pretrained(
                    MobileBertModelResources::MOBILEBERT_ENGLISH_POS,
                )),
                config_resource: Box::new(RemoteResource::from_pretrained(
                    MobileBertConfigResources::MOBILEBERT_ENGLISH_POS,
                )),
                vocab_resource: Box::new(RemoteResource::from_pretrained(
                    MobileBertVocabResources::MOBILEBERT_ENGLISH_POS,
                )),
                merges_resource: None,
                lower_case: true,
                strip_accents: Some(true),
                add_prefix_space: None,
                device: Device::cuda_if_available(),
                label_aggregation_function: LabelAggregationOption::First,
                batch_size: 64,
            },
        }
    }
}

impl From<POSConfig> for TokenClassificationConfig {
    fn from(pos_config: POSConfig) -> Self {
        pos_config.token_classification_config
    }
}

/// # POSModel to extract Part of Speech tags
pub struct POSModel {
    token_classification_model: TokenClassificationModel,
}

impl POSModel {
    /// Build a new `POSModel`
    ///
    /// # Arguments
    ///
    /// * `pos_config` - `POSConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::pos_tagging::POSModel;
    ///
    /// let pos_model = POSModel::new(Default::default())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(pos_config: POSConfig) -> Result<POSModel, RustBertError> {
        let model = TokenClassificationModel::new(pos_config.into())?;
        Ok(POSModel {
            token_classification_model: model,
        })
    }

    /// Extract entities from a text
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to extract entities from.
    ///
    /// # Returns
    ///
    /// * `Vec<Vec<POSTag>>` containing Part of Speech tags for the inputs provided
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// # use rust_bert::pipelines::pos_tagging::POSModel;
    ///
    /// let pos_model = POSModel::new(Default::default())?;
    /// let input = [
    ///     "My name is Amy. I live in Paris.",
    ///     "Paris is a city in France.",
    /// ];
    /// let output = pos_model.predict(&input);
    /// # Ok(())
    /// # }
    /// ```
    pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<POSTag>>
    where
        S: AsRef<str>,
    {
        self.token_classification_model
            .predict(input, true, false)
            .into_iter()
            .map(|sequence_tokens| {
                sequence_tokens
                    .into_iter()
                    .map(|mut token| {
                        if (Self::is_punctuation(token.text.as_str()))
                            & ((token.score < 0.5) | token.score.is_nan())
                        {
                            token.label = String::from(".");
                            token.score = 1f64;
                        };
                        token
                    })
                    .map(|token| POSTag {
                        word: token.text,
                        score: token.score,
                        label: token.label,
                    })
                    .collect::<Vec<POSTag>>()
            })
            .collect::<Vec<Vec<POSTag>>>()
    }

    fn is_punctuation(string: &str) -> bool {
        string.chars().all(|c| c.is_ascii_punctuation())
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[ignore] // no need to run, compilation is enough to verify it is Send
    fn test() {
        let config = POSConfig::default();
        let _: Box<dyn Send> = Box::new(POSModel::new(config));
    }
}