1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright (c) 2018 chakki (https://github.com/chakki-works/seqeval/blob/master/seqeval/metrics/sequence_labeling.py)
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Named Entity Recognition pipeline
//! Extracts entities (Person, Location, Organization, Miscellaneous) from text.
//! Pretrained models are available for the following languages:
//! - English
//! - German
//! - Spanish
//! - Dutch
//!
//! The default NER mode is an English BERT cased large model finetuned on CoNNL03, contributed by the [MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz)
//! All resources for this model can be downloaded using the Python utility script included in this repository.
//! 1. Set-up a Python virtual environment and install dependencies (in ./requirements.txt)
//! 2. Run the conversion script python /utils/download-dependencies_bert_ner.py.
//! The dependencies will be downloaded to the user's home directory, under ~/rustbert/bert-ner
//!
//! The example below illustrate how to run the model for the default English NER model
//! ```no_run
//! use rust_bert::pipelines::ner::NERModel;
//! # fn main() -> anyhow::Result<()> {
//! let ner_model = NERModel::new(Default::default())?;
//!
//! let input = [
//!     "My name is Amy. I live in Paris.",
//!     "Paris is a city in France.",
//! ];
//! let output = ner_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```no_run
//! # use rust_bert::pipelines::ner::Entity;
//! # use rust_tokenizers::Offset;
//! # let output =
//! [
//!     [
//!         Entity {
//!             word: String::from("Amy"),
//!             score: 0.9986,
//!             label: String::from("I-PER"),
//!             offset: Offset { begin: 11, end: 14 },
//!         },
//!         Entity {
//!             word: String::from("Paris"),
//!             score: 0.9985,
//!             label: String::from("I-LOC"),
//!             offset: Offset { begin: 26, end: 31 },
//!         },
//!     ],
//!     [
//!         Entity {
//!             word: String::from("Paris"),
//!             score: 0.9988,
//!             label: String::from("I-LOC"),
//!             offset: Offset { begin: 0, end: 5 },
//!         },
//!         Entity {
//!             word: String::from("France"),
//!             score: 0.9993,
//!             label: String::from("I-LOC"),
//!             offset: Offset { begin: 19, end: 25 },
//!         },
//!     ],
//! ]
//! # ;
//! ```
//!
//! To run the pipeline for another language, change the NERModel configuration from its default:
//!
//! ```no_run
//! use rust_bert::pipelines::common::ModelType;
//! use rust_bert::pipelines::ner::NERModel;
//! use rust_bert::pipelines::token_classification::TokenClassificationConfig;
//! use rust_bert::resources::RemoteResource;
//! use rust_bert::roberta::{
//!     RobertaConfigResources, RobertaModelResources, RobertaVocabResources,
//! };
//! use tch::Device;
//!
//! # fn main() -> anyhow::Result<()> {
//! let ner_config = TokenClassificationConfig {
//!     model_type: ModelType::XLMRoberta,
//!     model_resource: Box::new(RemoteResource::from_pretrained(
//!         RobertaModelResources::XLM_ROBERTA_NER_DE,
//!     )),
//!     config_resource: Box::new(RemoteResource::from_pretrained(
//!         RobertaConfigResources::XLM_ROBERTA_NER_DE,
//!     )),
//!     vocab_resource: Box::new(RemoteResource::from_pretrained(
//!         RobertaVocabResources::XLM_ROBERTA_NER_DE,
//!     )),
//!     lower_case: false,
//!     device: Device::cuda_if_available(),
//!     ..Default::default()
//! };
//!
//! let ner_model = NERModel::new(ner_config)?;
//!
//! //    Define input
//! let input = [
//!     "Mein Name ist Amélie. Ich lebe in Paris.",
//!     "Paris ist eine Stadt in Frankreich.",
//! ];
//! let output = ner_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! The XLMRoberta models for the languages are defined as follows:
//!
//! | **Language** |**Model name**|
//! :-----:|:----:
//! English| XLM_ROBERTA_NER_EN |
//! German| XLM_ROBERTA_NER_DE |
//! Spanish| XLM_ROBERTA_NER_ES |
//! Dutch| XLM_ROBERTA_NER_NL |

use crate::common::error::RustBertError;
use crate::pipelines::token_classification::{
    Token, TokenClassificationConfig, TokenClassificationModel,
};
use rust_tokenizers::Offset;
use serde::{Deserialize, Serialize};

#[derive(Debug, Clone, Serialize, Deserialize)]
/// # Entity generated by a `NERModel`
pub struct Entity {
    /// String representation of the Entity
    pub word: String,
    /// Confidence score
    pub score: f64,
    /// Entity label (e.g. ORG, LOC...)
    pub label: String,
    /// Token offsets
    pub offset: Offset,
}

//type alias for some backward compatibility
type NERConfig = TokenClassificationConfig;

/// # NERModel to extract named entities
pub struct NERModel {
    token_classification_model: TokenClassificationModel,
}

impl NERModel {
    /// Build a new `NERModel`
    ///
    /// # Arguments
    ///
    /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model = NERModel::new(Default::default())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> {
        let model = TokenClassificationModel::new(ner_config)?;
        Ok(NERModel {
            token_classification_model: model,
        })
    }

    /// Extract entities from a text
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to extract entities from.
    ///
    /// # Returns
    ///
    /// * `Vec<Vec<Entity>>` containing extracted entities
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// # use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model = NERModel::new(Default::default())?;
    /// let input = [
    ///     "My name is Amy. I live in Paris.",
    ///     "Paris is a city in France.",
    /// ];
    /// let output = ner_model.predict(&input);
    /// # Ok(())
    /// # }
    /// ```
    pub fn predict<S>(&self, input: &[S]) -> Vec<Vec<Entity>>
    where
        S: AsRef<str>,
    {
        self.token_classification_model
            .predict(input, true, false)
            .into_iter()
            .map(|sequence_tokens| {
                sequence_tokens
                    .into_iter()
                    .filter(|token| token.label != "O")
                    .map(|token| Entity {
                        offset: token.offset.unwrap(),
                        word: token.text,
                        score: token.score,
                        label: token.label,
                    })
                    .collect::<Vec<Entity>>()
            })
            .collect::<Vec<Vec<Entity>>>()
    }

    /// Extract full entities from a text performing entity chunking. Follows the algorithm for entities
    /// chunking described in [Erik F. Tjong Kim Sang, Jorn Veenstra, Representing Text Chunks](https://www.aclweb.org/anthology/E99-1023/)
    /// The proposed implementation is inspired by the [Python seqeval library](https://github.com/chakki-works/seqeval) (shared under MIT license).
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to extract entities from.
    ///
    /// # Returns
    ///
    /// * `Vec<Entity>` containing consolidated extracted entities
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// # use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model = NERModel::new(Default::default())?;
    /// let input = ["Asked John Smith about Acme Corp"];
    /// let output = ner_model.predict_full_entities(&input);
    /// # Ok(())
    /// # }
    /// ```
    ///
    /// Outputs:
    ///
    /// Output: \
    /// ```no_run
    /// # use rust_bert::pipelines::question_answering::Answer;
    /// # use rust_bert::pipelines::ner::Entity;
    /// # use rust_tokenizers::Offset;
    /// # let output =
    /// [[
    ///     Entity {
    ///         word: String::from("John Smith"),
    ///         score: 0.9747,
    ///         label: String::from("PER"),
    ///         offset: Offset { begin: 6, end: 16 },
    ///     },
    ///     Entity {
    ///         word: String::from("Acme Corp"),
    ///         score: 0.8847,
    ///         label: String::from("I-LOC"),
    ///         offset: Offset { begin: 23, end: 32 },
    ///     },
    /// ]]
    /// # ;
    /// ```
    pub fn predict_full_entities(&self, input: &[&str]) -> Vec<Vec<Entity>> {
        let tokens = self.token_classification_model.predict(input, true, false);
        let mut entities: Vec<Vec<Entity>> = Vec::new();

        for sequence_tokens in tokens {
            entities.push(Self::consolidate_entities(&sequence_tokens));
        }
        entities
    }

    fn consolidate_entities(tokens: &[Token]) -> Vec<Entity> {
        let mut entities: Vec<Entity> = Vec::new();

        let mut entity_builder = EntityBuilder::new();
        for (position, token) in tokens.iter().enumerate() {
            let tag = token.get_tag();
            let label = token.get_label();
            if let Some(entity) = entity_builder.handle_current_tag(tag, label, position, tokens) {
                entities.push(entity)
            }
        }
        if let Some(entity) = entity_builder.flush_and_reset(tokens.len(), tokens) {
            entities.push(entity);
        }
        entities
    }
}

struct EntityBuilder<'a> {
    previous_node: Option<(usize, Tag, &'a str)>,
}

impl<'a> EntityBuilder<'a> {
    fn new() -> Self {
        EntityBuilder {
            previous_node: None,
        }
    }

    fn handle_current_tag(
        &mut self,
        tag: Tag,
        label: &'a str,
        position: usize,
        tokens: &[Token],
    ) -> Option<Entity> {
        match tag {
            Tag::Outside => self.flush_and_reset(position, tokens),
            Tag::Begin | Tag::Single => {
                let entity = self.flush_and_reset(position, tokens);
                self.start_new(position, tag, label);
                entity
            }
            Tag::Inside | Tag::End => {
                if let Some((_, previous_tag, previous_label)) = self.previous_node {
                    if (previous_tag == Tag::End)
                        | (previous_tag == Tag::Single)
                        | (previous_label != label)
                    {
                        let entity = self.flush_and_reset(position, tokens);
                        self.start_new(position, tag, label);
                        entity
                    } else {
                        None
                    }
                } else {
                    self.start_new(position, tag, label);
                    None
                }
            }
        }
    }

    fn flush_and_reset(&mut self, position: usize, tokens: &[Token]) -> Option<Entity> {
        let entity = if let Some((start, _, label)) = self.previous_node {
            let entity_tokens = &tokens[start..position];
            Some(Entity {
                word: entity_tokens
                    .iter()
                    .map(|token| token.text.as_str())
                    .collect::<Vec<&str>>()
                    .join(" "),
                score: entity_tokens.iter().map(|token| token.score).product(),
                label: label.to_string(),
                offset: Offset {
                    begin: entity_tokens.first()?.offset?.begin,
                    end: entity_tokens.last()?.offset?.end,
                },
            })
        } else {
            None
        };
        self.previous_node = None;
        entity
    }

    fn start_new(&mut self, position: usize, tag: Tag, label: &'a str) {
        self.previous_node = Some((position, tag, label))
    }
}

#[derive(Debug, Clone, Copy, PartialEq)]
enum Tag {
    Begin,
    Inside,
    Outside,
    End,
    Single,
}

impl Token {
    fn get_tag(&self) -> Tag {
        match self.label.split('-').collect::<Vec<&str>>()[0] {
            "B" => Tag::Begin,
            "I" => Tag::Inside,
            "O" => Tag::Outside,
            "E" => Tag::End,
            "S" => Tag::Single,
            _ => panic!("Invalid tag encountered for token {:?}", self),
        }
    }

    fn get_label(&self) -> &str {
        let split_label = self.label.split('-').collect::<Vec<&str>>();
        if split_label.len() > 1 {
            split_label[1]
        } else {
            ""
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[ignore] // no need to run, compilation is enough to verify it is Send
    fn test() {
        let config = NERConfig::default();
        let _: Box<dyn Send> = Box::new(NERModel::new(config));
    }
}