1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
/// Derived from https://github.com/MaartenGr/KeyBERT, shared under MIT License
///
/// Copyright (c) 2020, Maarten P. Grootendorst
/// Copyright (c) 2022, Guillaume Becquin
///
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in all
/// copies or substantial portions of the Software.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
/// SOFTWARE.
use crate::pipelines::keywords_extraction::tokenizer::StopWordsTokenizer;
#[cfg(feature = "remote")]
use crate::pipelines::sentence_embeddings::SentenceEmbeddingsModelType;
use crate::pipelines::sentence_embeddings::{
SentenceEmbeddingsConfig, SentenceEmbeddingsModel, SentenceEmbeddingsSentenceBertConfig,
SentenceEmbeddingsTokenizerConfig,
};
use crate::{Config, RustBertError};
use regex::Regex;
use rust_tokenizers::Offset;
use std::borrow::Cow;
use std::cmp::min;
use std::collections::{HashMap, HashSet};
/// # Keyword generated by a `KeywordExtractionModel`
#[derive(Debug, Clone)]
pub struct Keyword {
/// String representation of the keyword
pub text: String,
/// Similarity score for the keyword
pub score: f32,
/// List of offsets where the keyword was found
pub offsets: Vec<Offset>,
}
/// # Scoring function variants for keyword ranking
pub enum KeywordScorerType {
/// Cosine similarity ranker, computing score as the dot product of the normalized
/// vector representations for the document and keywords from the sentence embedding model
CosineSimilarity,
/// Maximal margin relevance ranker. The first keyword has the maximum cosine similarity with the
/// document. Further keywords are incrementally chosen based on their similarity to the document
/// and penalized by the maximum similarity to the keywords already identified, adjusted by a diversity
/// factor. A high diversity (closer to 1.0) will give more importance to getting varied keywords, at the
/// cost of less relevance to the original document.
MaximalMarginRelevance,
/// Maximum sum ranker. An original list of the top-N keywords is identified via cosine similarity.
/// For all `N choose k` combinations of k keywords, the combination with the maximum internal
/// distance (sum of all distance from a keyword to other keywords in the set) is chosen as the list
/// of keywords to return. High values of `max_sum_candidates` will lead to a high number of keyword
/// candidates and increase the computational cost / memory requirements.
MaxSum,
}
/// # Configuration for Keyword extraction
pub struct KeywordExtractionConfig<'a> {
/// `SentenceEmbeddingsConfig` defining the sentence embeddings model to use
pub sentence_embeddings_config: SentenceEmbeddingsConfig,
/// Optional list of tokenizer stopwords to exclude from the keywords candidate list. Default to a list of English stopwords.
pub tokenizer_stopwords: Option<HashSet<&'a str>>,
/// Optional tokenization regex pattern. Defaults to sequence of word characters.
pub tokenizer_pattern: Option<Regex>,
/// `KeywordScorerType` used to rank keywords.
pub scorer_type: KeywordScorerType,
/// N-gram range (inclusive) for keywords. (1, 2) would consider all 1 and 2 word gram for keyword candidates.
pub ngram_range: (usize, usize),
/// Number of keywords to return
pub num_keywords: usize,
/// Optional diversity parameter used for the `MaximalMarginRelevance` ranker, defaults to 0.5.
/// A high diversity (closer to 1.0) will give more importance to getting varied keywords, at the
/// cost of less relevance to the original document.
pub diversity: Option<f64>,
/// Optional number of candidate sets used for `MaxSum` ranker. Higher values are more likely to
/// identify a global optimum for the ranker criterion, but are more likely to include sets that are less relevant to the
/// input document. Larger values also have a higher computational and memory cost (N<sup>2</sup> scale)
pub max_sum_candidates: Option<usize>,
}
#[cfg(feature = "remote")]
impl Default for KeywordExtractionConfig<'_> {
fn default() -> Self {
let sentence_embeddings_config =
SentenceEmbeddingsConfig::from(SentenceEmbeddingsModelType::AllMiniLmL6V2);
Self {
sentence_embeddings_config,
tokenizer_stopwords: None,
tokenizer_pattern: None,
scorer_type: KeywordScorerType::CosineSimilarity,
ngram_range: (1, 1),
num_keywords: 5,
diversity: None,
max_sum_candidates: None,
}
}
}
/// # KeywordExtractionModel to extract keywords from input texts
///
/// It contains a sentence embeddings model to compute word-document similarities,
/// a tokenizer to define a keyword candidates list and a scorer to rank these keywords.
/// - `sentence_embeddings_model`: Sentence embeddings model
/// - `tokenizer`: tokenizer used to generate the list of candidates (differs from the transformer tokenizer)
pub struct KeywordExtractionModel<'a> {
pub sentence_embeddings_model: SentenceEmbeddingsModel,
pub tokenizer: StopWordsTokenizer<'a>,
scorer_type: KeywordScorerType,
ngram_range: (usize, usize),
num_keywords: usize,
diversity: Option<f64>,
max_sum_candidates: Option<usize>,
}
impl<'a> KeywordExtractionModel<'a> {
/// Build a new `KeywordExtractionModel`
///
/// # Arguments
///
/// * `config` - `KeywordExtractionConfig` object containing a sentence embeddings configuration and tokenizer-specific options
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::keywords_extraction::KeywordExtractionModel;
///
/// let keyword_extraction_model = KeywordExtractionModel::new(Default::default())?;
/// # Ok(())
/// # }
/// ```
pub fn new(
config: KeywordExtractionConfig<'a>,
) -> Result<KeywordExtractionModel<'a>, RustBertError> {
let tokenizer_config = SentenceEmbeddingsTokenizerConfig::from_file(
config
.sentence_embeddings_config
.tokenizer_config_resource
.get_local_path()?,
);
let sentence_bert_config = SentenceEmbeddingsSentenceBertConfig::from_file(
config
.sentence_embeddings_config
.sentence_bert_config_resource
.get_local_path()?,
);
let sentence_embeddings_model =
SentenceEmbeddingsModel::new(config.sentence_embeddings_config)?;
let do_lower_case = tokenizer_config
.do_lower_case
.unwrap_or(sentence_bert_config.do_lower_case);
let tokenizer = StopWordsTokenizer::new(
config.tokenizer_stopwords,
config.tokenizer_pattern,
do_lower_case,
);
Ok(Self {
sentence_embeddings_model,
tokenizer,
scorer_type: config.scorer_type,
ngram_range: config.ngram_range,
num_keywords: config.num_keywords,
diversity: config.diversity,
max_sum_candidates: config.max_sum_candidates,
})
}
/// Extract keywords from a list of input texts.
///
/// # Arguments
///
/// * `inputs` - slice of string-like input texts to extract keywords from
///
/// # Returns
///
/// * `Result<Vec<Vec<Keyword>>, RustBertError>` containing a list of keyword for each input text
///
/// # Example
///
/// ```no_run
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::pipelines::keywords_extraction::KeywordExtractionModel;
///
/// let keyword_extraction_model = KeywordExtractionModel::new(Default::default())?;
/// let input = [
/// "This is a first sentence to extract keywords from.",
/// "Some keywords will be extracted from this text too.",
/// ];
/// let output = keyword_extraction_model.predict(&input);
/// # Ok(())
/// # }
/// ```
pub fn predict<S>(&self, inputs: &[S]) -> Result<Vec<Vec<Keyword>>, RustBertError>
where
S: AsRef<str> + Sync,
{
let words = self.tokenizer.tokenize_list(inputs, self.ngram_range);
let (flat_word_list, document_boundaries) =
KeywordExtractionModel::flatten_word_list(&words);
let document_embeddings = self
.sentence_embeddings_model
.encode_as_tensor(inputs)?
.embeddings;
let word_embeddings = self
.sentence_embeddings_model
.encode_as_tensor(&flat_word_list)?;
let mut output_keywords: Vec<Vec<Keyword>> = Vec::new();
for (document_index, (start, end)) in document_boundaries.into_iter().enumerate() {
let mut document_keywords = Vec::new();
let document_embedding = document_embeddings
.select(0, document_index as i64)
.unsqueeze(0);
let word_embeddings = word_embeddings
.embeddings
.slice(0, start as i64, end as i64, 1);
let num_keywords = min(self.num_keywords, word_embeddings.size()[0] as usize);
let local_top_word_indices = self.scorer_type.score_keywords(
document_embedding,
word_embeddings,
num_keywords,
self.diversity,
self.max_sum_candidates,
);
for (index, score) in local_top_word_indices {
let word = flat_word_list[start + index];
document_keywords.push(Keyword {
text: word.to_string(),
score,
offsets: words[document_index].get(word).unwrap().clone(),
});
}
document_keywords.sort_by(|a, b| b.score.partial_cmp(&a.score).unwrap());
output_keywords.push(document_keywords)
}
Ok(output_keywords)
}
fn flatten_word_list(
words: &'a [HashMap<Cow<str>, Vec<Offset>>],
) -> (Vec<&'a Cow<'a, str>>, Vec<(usize, usize)>) {
let mut flat_word_list = Vec::new();
let mut doc_boundaries = Vec::with_capacity(words.len());
let mut current_index = 0;
for doc_words_map in words {
let doc_words = doc_words_map.keys();
let doc_words_len = doc_words_map.len();
flat_word_list.extend(doc_words);
doc_boundaries.push((current_index, current_index + doc_words_len));
current_index += doc_words_len;
}
(flat_word_list, doc_boundaries)
}
}