1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
//! # DeBERTa V2 (He et al.)
//!
//! Implementation of the DeBERTa V2/V3 language model ([DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing](https://arxiv.org/abs/2111.09543) He, Gao, Chen, 2021).
//! The base model is implemented in the `deberta_v2_model::DebertaV2Model` struct. Several language model heads have also been implemented, including:
//! - Question answering: `deberta_v2_model::DebertaV2ForQuestionAnswering`
//! - Sequence classification: `deberta_v2_model::DebertaV2ForSequenceClassification`
//! - Token classification (e.g. NER, POS tagging): `deberta_v2_model::DebertaV2ForTokenClassification`.
//!
//! # Model set-up and pre-trained weights loading
//!
//! All models expect the following resources:
//! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers)
//! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format.
//! - `DebertaV2Tokenizer` using a `spiece.model` SentencePiece model file
//! Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources.
//!
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! #
//! use tch::{nn, Device};
//! # use std::path::PathBuf;
//! use rust_bert::deberta_v2::{
//! DebertaV2Config, DebertaV2ConfigResources, DebertaV2ForSequenceClassification,
//! DebertaV2ModelResources, DebertaV2VocabResources,
//! };
//! use rust_bert::resources::{RemoteResource, ResourceProvider};
//! use rust_bert::Config;
//! use rust_tokenizers::tokenizer::DeBERTaV2Tokenizer;
//!
//! let config_resource =
//! RemoteResource::from_pretrained(DebertaV2ConfigResources::DEBERTA_V3_BASE);
//! let vocab_resource = RemoteResource::from_pretrained(DebertaV2VocabResources::DEBERTA_V3_BASE);
//! let weights_resource =
//! RemoteResource::from_pretrained(DebertaV2ModelResources::DEBERTA_V3_BASE);
//! let config_path = config_resource.get_local_path()?;
//! let vocab_path = vocab_resource.get_local_path()?;
//! let weights_path = weights_resource.get_local_path()?;
//! let device = Device::cuda_if_available();
//! let mut vs = nn::VarStore::new(device);
//! let tokenizer =
//! DeBERTaV2Tokenizer::from_file(vocab_path.to_str().unwrap(), false, false, false)?;
//! let config = DebertaV2Config::from_file(config_path);
//! let deberta_model = DebertaV2ForSequenceClassification::new(&vs.root(), &config);
//! vs.load(weights_path)?;
//!
//! # Ok(())
//! # }
//! ```
mod attention;
mod deberta_v2_model;
mod embeddings;
mod encoder;
pub use deberta_v2_model::{
DebertaV2Config, DebertaV2ConfigResources, DebertaV2ForMaskedLM, DebertaV2ForQuestionAnswering,
DebertaV2ForSequenceClassification, DebertaV2ForTokenClassification, DebertaV2Model,
DebertaV2ModelResources, DebertaV2QuestionAnsweringOutput,
DebertaV2SequenceClassificationOutput, DebertaV2TokenClassificationOutput,
DebertaV2VocabResources,
};