Expand description
BART (Lewis et al.)
Implementation of the BART language model (BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov, Zettlemoyer, 2019).
The base model is implemented in the bart_model::BartModel struct. The model also includes a language model head: bart_model::BartForConditionalGeneration
implementing the common generation_utils::LMHeadModel trait shared between the models used for generation (see pipelines for more information).
Model set-up and pre-trained weights loading
The summarization capabilities are illustrated in examples/summarization_bart, run with cargo run --example summarization_bart.
All models expect the following resources:
- Configuration file expected to have a structure following the Transformers library
- Model weights are expected to have a structure and parameter names following the Transformers library. A conversion using the Python utility scripts is required to convert the
.binweights to the.otformat. RobertaTokenizerusing avocab.txtvocabulary andmerges.txt2-gram merges Pretrained models are available and can be downloaded using RemoteResources.
use tch::{nn, Device};
use rust_bert::bart::{BartConfig, BartModel};
use rust_bert::resources::{LocalResource, ResourceProvider};
use rust_bert::Config;
use rust_tokenizers::tokenizer::RobertaTokenizer;
let config_resource = LocalResource {
local_path: PathBuf::from("path/to/config.json"),
};
let vocab_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let merges_resource = LocalResource {
local_path: PathBuf::from("path/to/vocab.txt"),
};
let weights_resource = LocalResource {
local_path: PathBuf::from("path/to/model.ot"),
};
let config_path = config_resource.get_local_path()?;
let vocab_path = vocab_resource.get_local_path()?;
let merges_path = merges_resource.get_local_path()?;
let weights_path = weights_resource.get_local_path()?;
let device = Device::cuda_if_available();
let mut vs = nn::VarStore::new(device);
let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file(
vocab_path.to_str().unwrap(),
merges_path.to_str().unwrap(),
true,
false,
)?;
let config = BartConfig::from_file(config_path);
let bart_model = BartModel::new(&vs.root(), &config);
vs.load(weights_path)?;
Structs
BART model configuration
BART Pretrained model config files
BART Model for conditional generation
BART Model for sequence classification
Language generation model based on the Bart architecture
BART Pretrained model merges files
BART Base model
Container holding a BART model output. The decoder output may hold the hidden state of
the last layer of the decoder, or may hold logits for a custom head module after the
decoder (e.g. for classification or language modeling tasks)
BART Pretrained model weight files
BART Pretrained model vocab files
Cache for BART attention layers