1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use std::path::Path;
use serde::{de, Deserialize, Deserializer};
use tch::{nn, Device, Kind, Tensor};
use crate::common::activations::{Activation, TensorFunction};
use crate::{Config, RustBertError};
#[derive(Debug, Deserialize)]
pub struct PoolingConfig {
pub word_embedding_dimension: i64,
pub pooling_mode_cls_token: bool,
pub pooling_mode_max_tokens: bool,
pub pooling_mode_mean_tokens: bool,
pub pooling_mode_mean_sqrt_len_tokens: bool,
}
impl Config for PoolingConfig {}
pub struct Pooling {
conf: PoolingConfig,
}
impl Pooling {
pub fn new(conf: PoolingConfig) -> Pooling {
Pooling { conf }
}
pub fn forward(&self, mut token_embeddings: Tensor, attention_mask: &Tensor) -> Tensor {
let mut output_vectors = Vec::new();
if self.conf.pooling_mode_cls_token {
let cls_token = token_embeddings.select(1, 0);
output_vectors.push(cls_token);
}
if self.conf.pooling_mode_max_tokens {
let input_mask_expanded = attention_mask.unsqueeze(-1).expand_as(&token_embeddings);
token_embeddings = token_embeddings.masked_fill_(&input_mask_expanded.eq(0), -1e9);
let max_over_time = token_embeddings.max_dim(1, true).0;
output_vectors.push(max_over_time);
}
if self.conf.pooling_mode_mean_tokens || self.conf.pooling_mode_mean_sqrt_len_tokens {
let input_mask_expanded = attention_mask.unsqueeze(-1).expand_as(&token_embeddings);
let sum_embeddings =
(token_embeddings * &input_mask_expanded).sum_dim_intlist(&[1], false, Kind::Float);
let sum_mask = input_mask_expanded.sum_dim_intlist(&[1], false, Kind::Float);
let sum_mask = sum_mask.clamp_min(10e-9);
if self.conf.pooling_mode_mean_tokens {
output_vectors.push(&sum_embeddings / &sum_mask);
}
if self.conf.pooling_mode_mean_sqrt_len_tokens {
output_vectors.push(sum_embeddings / sum_mask.sqrt());
}
}
Tensor::cat(&output_vectors, 1)
}
}
#[derive(Debug, Deserialize)]
pub struct DenseConfig {
pub in_features: i64,
pub out_features: i64,
pub bias: bool,
#[serde(deserialize_with = "last_part")]
pub activation_function: Activation,
}
impl Config for DenseConfig {}
fn last_part<'de, D>(deserializer: D) -> Result<Activation, D::Error>
where
D: Deserializer<'de>,
{
let activation = String::deserialize(deserializer)?;
activation
.split('.')
.last()
.map(|s| serde_json::from_value(serde_json::Value::String(s.to_lowercase())))
.transpose()
.map_err(de::Error::custom)?
.ok_or_else(|| format!("Invalid Activation: {}", activation))
.map_err(de::Error::custom)
}
pub struct Dense {
linear: nn::Linear,
activation: TensorFunction,
_var_store: nn::VarStore,
}
impl Dense {
pub fn new<P: AsRef<Path>>(
dense_conf: DenseConfig,
dense_weights: P,
device: Device,
) -> Result<Dense, RustBertError> {
let mut vs_dense = nn::VarStore::new(device);
let linear_conf = nn::LinearConfig {
ws_init: nn::Init::Const(0.),
bs_init: Some(nn::Init::Const(0.)),
bias: dense_conf.bias,
};
let linear = nn::linear(
&vs_dense.root(),
dense_conf.in_features,
dense_conf.out_features,
linear_conf,
);
let activation = dense_conf.activation_function.get_function();
vs_dense.load(dense_weights)?;
Ok(Dense {
linear,
activation,
_var_store: vs_dense,
})
}
pub fn forward(&self, x: &Tensor) -> Tensor {
self.activation.get_fn()(&x.apply(&self.linear))
}
}