1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
// Copyright 2021 Google Research
// Copyright 2020-present, the HuggingFace Inc. team.
// Copyright 2021 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::common::activations::{TensorFunction, _tanh};
use crate::common::dropout::Dropout;
use crate::common::embeddings::get_shape_and_device_from_ids_embeddings_pair;
use crate::fnet::embeddings::FNetEmbeddings;
use crate::fnet::encoder::FNetEncoder;
use crate::{Activation, Config, RustBertError};
use serde::{Deserialize, Serialize};
use std::borrow::Borrow;
use std::collections::HashMap;
use tch::nn::LayerNormConfig;
use tch::{nn, Tensor};

/// # FNet Pretrained model weight files
pub struct FNetModelResources;

/// # FNet Pretrained model config files
pub struct FNetConfigResources;

/// # FNet Pretrained model vocab files
pub struct FNetVocabResources;

impl FNetModelResources {
    /// Shared under Apache 2.0 license by the Google team at <https://github.com/google-research/google-research/tree/master/f_net>. Modified with conversion to C-array format.
    pub const BASE: (&'static str, &'static str) = (
        "fnet-base/model",
        "https://huggingface.co/google/fnet-base/resolve/main/rust_model.ot",
    );
    /// Shared under Apache 2.0 license at <https://huggingface.co/gchhablani/fnet-base-finetuned-sst2>. Modified with conversion to C-array format.
    pub const BASE_SST2: (&'static str, &'static str) = (
        "fnet-base-sst2/model",
        "https://huggingface.co/gchhablani/fnet-base-finetuned-sst2/resolve/main/rust_model.ot",
    );
}

impl FNetConfigResources {
    /// Shared under Apache 2.0 license by the Google team at <https://github.com/google-research/google-research/tree/master/f_net>. Modified with conversion to C-array format.
    pub const BASE: (&'static str, &'static str) = (
        "fnet-base/config",
        "https://huggingface.co/google/fnet-base/resolve/main/config.json",
    );
    /// Shared under Apache 2.0 license at <https://huggingface.co/gchhablani/fnet-base-finetuned-sst2>. Modified with conversion to C-array format.
    pub const BASE_SST2: (&'static str, &'static str) = (
        "fnet-base-sst2/config",
        "https://huggingface.co/gchhablani/fnet-base-finetuned-sst2/resolve/main/config.json",
    );
}

impl FNetVocabResources {
    /// Shared under Apache 2.0 license by the Google team at <https://github.com/google-research/google-research/tree/master/f_net>. Modified with conversion to C-array format.
    pub const BASE: (&'static str, &'static str) = (
        "fnet-base/spiece",
        "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
    );
    /// Shared under Apache 2.0 license at <https://huggingface.co/gchhablani/fnet-base-finetuned-sst2>. Modified with conversion to C-array format.
    pub const BASE_SST2: (&'static str, &'static str) = (
        "fnet-base-sst2/spiece",
        "https://huggingface.co/google/fnet-base/resolve/main/spiece.model",
    );
}

#[derive(Debug, Serialize, Deserialize)]
/// # FNet model configuration
/// Defines the FNet model architecture (e.g. number of layers, hidden layer size, label mapping...)
pub struct FNetConfig {
    pub vocab_size: i64,
    pub hidden_size: i64,
    pub num_hidden_layers: i64,
    pub intermediate_size: i64,
    pub hidden_act: Activation,
    pub hidden_dropout_prob: f64,
    pub max_position_embeddings: i64,
    pub type_vocab_size: i64,
    pub initializer_range: f64,
    pub layer_norm_eps: Option<f64>,
    pub pad_token_id: Option<i64>,
    pub bos_token_id: Option<i64>,
    pub eos_token_id: Option<i64>,
    pub id2label: Option<HashMap<i64, String>>,
    pub label2id: Option<HashMap<String, i64>>,
    pub output_attentions: Option<bool>,
    pub output_hidden_states: Option<bool>,
}

impl Config for FNetConfig {}

impl Default for FNetConfig {
    fn default() -> Self {
        FNetConfig {
            vocab_size: 32000,
            hidden_size: 768,
            num_hidden_layers: 12,
            intermediate_size: 3072,
            hidden_act: Activation::gelu_new,
            hidden_dropout_prob: 0.1,
            max_position_embeddings: 512,
            type_vocab_size: 4,
            initializer_range: 0.02,
            layer_norm_eps: Some(1e-12),
            pad_token_id: Some(3),
            bos_token_id: Some(1),
            eos_token_id: Some(2),
            id2label: None,
            label2id: None,
            output_attentions: None,
            output_hidden_states: None,
        }
    }
}

struct FNetPooler {
    dense: nn::Linear,
    activation: TensorFunction,
}

impl FNetPooler {
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetPooler
    where
        P: Borrow<nn::Path<'p>>,
    {
        let dense = nn::linear(
            p.borrow() / "dense",
            config.hidden_size,
            config.hidden_size,
            Default::default(),
        );
        let activation = TensorFunction::new(Box::new(_tanh));

        FNetPooler { dense, activation }
    }

    pub fn forward(&self, hidden_states: &Tensor) -> Tensor {
        self.activation.get_fn()(&hidden_states.select(1, 0).apply(&self.dense))
    }
}

struct FNetPredictionHeadTransform {
    dense: nn::Linear,
    activation: TensorFunction,
    layer_norm: nn::LayerNorm,
}

impl FNetPredictionHeadTransform {
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetPredictionHeadTransform
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let dense = nn::linear(
            p / "dense",
            config.hidden_size,
            config.hidden_size,
            Default::default(),
        );
        let activation = config.hidden_act.get_function();
        let layer_norm_config = LayerNormConfig {
            eps: config.layer_norm_eps.unwrap_or(1e-12),
            ..Default::default()
        };
        let layer_norm =
            nn::layer_norm(p / "LayerNorm", vec![config.hidden_size], layer_norm_config);

        FNetPredictionHeadTransform {
            dense,
            activation,
            layer_norm,
        }
    }

    pub fn forward(&self, hidden_states: &Tensor) -> Tensor {
        let hidden_states = hidden_states.apply(&self.dense);
        let hidden_states: Tensor = self.activation.get_fn()(&hidden_states);
        hidden_states.apply(&self.layer_norm)
    }
}

struct FNetLMPredictionHead {
    transform: FNetPredictionHeadTransform,
    decoder: nn::Linear,
}

impl FNetLMPredictionHead {
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetLMPredictionHead
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let transform = FNetPredictionHeadTransform::new(p / "transform", config);
        let decoder = nn::linear(
            p / "decoder",
            config.hidden_size,
            config.vocab_size,
            Default::default(),
        );

        FNetLMPredictionHead { transform, decoder }
    }

    pub fn forward(&self, hidden_states: &Tensor) -> Tensor {
        self.transform.forward(hidden_states).apply(&self.decoder)
    }
}

/// # FNet Base model
/// Base architecture for FNet models. Task-specific models will be built from this common base model
/// It is made of the following blocks:
/// - `embeddings`: FNetEmbeddings combining word, position and segment embeddings
/// - `encoder`: `FNetEncoder` made of a stack of `FNetLayer`
/// - `pooler`: Optional `FNetPooler` taking the first sequence element hidden state for sequence-level tasks
pub struct FNetModel {
    embeddings: FNetEmbeddings,
    encoder: FNetEncoder,
    pooler: Option<FNetPooler>,
}

impl FNetModel {
    /// Build a new `FNetModel`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the FNet model
    /// * `config` - `FNetConfig` object defining the model architecture
    /// * `add_pooling_layer` - boolean flag indicating if a pooling layer should be added after the encoder
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::fnet::{FNetConfig, FNetModel};
    /// use rust_bert::Config;
    /// use std::path::Path;
    /// use tch::{nn, Device};
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = FNetConfig::from_file(config_path);
    /// let add_pooling_layer = true;
    /// let fnet = FNetModel::new(&p.root() / "fnet", &config, add_pooling_layer);
    /// ```
    pub fn new<'p, P>(p: P, config: &FNetConfig, add_pooling_layer: bool) -> FNetModel
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let embeddings = FNetEmbeddings::new(p / "embeddings", config);
        let encoder = FNetEncoder::new(p / "encoder", config);
        let pooler = if add_pooling_layer {
            Some(FNetPooler::new(p / "pooler", config))
        } else {
            None
        };

        FNetModel {
            embeddings,
            encoder,
            pooler,
        }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `FNetModelOutput` containing:
    ///   - `hidden_state` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*)
    ///   - `pooled_output` - Optional `Tensor` of shape (*batch size*, *hidden_size*) if the model was created with an optional pooling layer
    ///   - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use tch::{nn, Device, Tensor, no_grad};
    /// # use rust_bert::Config;
    /// # use std::path::Path;
    /// # use tch::kind::Kind::Int64;
    /// use rust_bert::fnet::{FNetConfig, FNetModel};
    /// # let config_path = Path::new("path/to/config.json");
    /// # let device = Device::Cpu;
    /// # let vs = nn::VarStore::new(device);
    /// # let config = FNetConfig::from_file(config_path);
    /// let add_pooling_layer = true;
    /// let model = FNetModel::new(&vs.root(), &config, add_pooling_layer);
    /// let (batch_size, sequence_length) = (64, 128);
    /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    /// let position_ids = Tensor::arange(sequence_length, (Int64, device))
    ///     .expand(&[batch_size, sequence_length], true);
    ///
    /// let model_output = no_grad(|| {
    ///     model
    ///         .forward_t(
    ///             Some(&input_tensor),
    ///             Some(&token_type_ids),
    ///             Some(&position_ids),
    ///             None,
    ///             false,
    ///         )
    ///         .unwrap()
    /// });
    /// ```
    pub fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeddings: Option<&Tensor>,
        train: bool,
    ) -> Result<FNetModelOutput, RustBertError> {
        let hidden_states = self.embeddings.forward_t(
            input_ids,
            token_type_ids,
            position_ids,
            input_embeddings,
            train,
        )?;

        let encoder_output = self.encoder.forward_t(&hidden_states, train);
        let pooled_output = if let Some(pooler) = &self.pooler {
            Some(pooler.forward(&encoder_output.hidden_states))
        } else {
            None
        };
        Ok(FNetModelOutput {
            hidden_states: encoder_output.hidden_states,
            pooled_output,
            all_hidden_states: encoder_output.all_hidden_states,
        })
    }
}

/// # FNet for masked language model
/// Base FNet model with a masked language model head to predict missing tokens, for example `"Looks like one [MASK] is missing" -> "person"`
/// It is made of the following blocks:
/// - `fnet`: Base FNet model
/// - `lm_head`: FNet LM prediction head
pub struct FNetForMaskedLM {
    fnet: FNetModel,
    lm_head: FNetLMPredictionHead,
}

impl FNetForMaskedLM {
    /// Build a new `FNetForMaskedLM`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the FNet model
    /// * `config` - `FNetConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::fnet::{FNetConfig, FNetForMaskedLM};
    /// use rust_bert::Config;
    /// use std::path::Path;
    /// use tch::{nn, Device};
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = FNetConfig::from_file(config_path);
    /// let fnet = FNetForMaskedLM::new(&p.root() / "fnet", &config);
    /// ```
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetForMaskedLM
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let fnet = FNetModel::new(p / "fnet", config, false);
        let lm_head = FNetLMPredictionHead::new(p.sub("cls").sub("predictions"), config);

        FNetForMaskedLM { fnet, lm_head }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `FNetMaskedLMOutput` containing:
    ///   - `prediction_scores` - `Tensor` of shape (*batch size*, *sequence_length*, *vocab_size*)
    ///   - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use tch::{nn, Device, Tensor, no_grad};
    /// # use rust_bert::Config;
    /// # use std::path::Path;
    /// # use tch::kind::Kind::Int64;
    /// use rust_bert::fnet::{FNetConfig, FNetForMaskedLM};
    /// # let config_path = Path::new("path/to/config.json");
    /// # let device = Device::Cpu;
    /// # let vs = nn::VarStore::new(device);
    /// # let config = FNetConfig::from_file(config_path);
    /// let model = FNetForMaskedLM::new(&vs.root(), &config);
    /// let (batch_size, sequence_length) = (64, 128);
    /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    /// let position_ids = Tensor::arange(sequence_length, (Int64, device))
    ///     .expand(&[batch_size, sequence_length], true);
    ///
    /// let model_output = no_grad(|| {
    ///     model
    ///         .forward_t(
    ///             Some(&input_tensor),
    ///             Some(&token_type_ids),
    ///             Some(&position_ids),
    ///             None,
    ///             false,
    ///         )
    ///         .unwrap()
    /// });
    /// ```
    pub fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeddings: Option<&Tensor>,
        train: bool,
    ) -> Result<FNetMaskedLMOutput, RustBertError> {
        let model_output = self.fnet.forward_t(
            input_ids,
            token_type_ids,
            position_ids,
            input_embeddings,
            train,
        )?;

        let prediction_scores = self.lm_head.forward(&model_output.hidden_states);

        Ok(FNetMaskedLMOutput {
            prediction_scores,
            all_hidden_states: model_output.all_hidden_states,
        })
    }
}

/// # FNet for sequence classification
/// Base FNet model with a classifier head to perform sentence or document-level classification
/// It is made of the following blocks:
/// - `fnet`: Base FNet model
/// - `dropout`: Dropout layer before the last linear layer
/// - `classifier`: linear layer mapping from hidden to the number of classes to predict
pub struct FNetForSequenceClassification {
    fnet: FNetModel,
    dropout: Dropout,
    classifier: nn::Linear,
}

impl FNetForSequenceClassification {
    /// Build a new `FNetForSequenceClassification`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the FNet model
    /// * `config` - `FNetConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::fnet::{FNetConfig, FNetForSequenceClassification};
    /// use rust_bert::Config;
    /// use std::path::Path;
    /// use tch::{nn, Device};
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = FNetConfig::from_file(config_path);
    /// let fnet = FNetForSequenceClassification::new(&p.root() / "fnet", &config);
    /// ```
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetForSequenceClassification
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let fnet = FNetModel::new(p / "fnet", config, true);
        let dropout = Dropout::new(config.hidden_dropout_prob);
        let num_labels = config
            .id2label
            .as_ref()
            .expect("num_labels not provided in configuration")
            .len() as i64;
        let classifier = nn::linear(
            p / "classifier",
            config.hidden_size,
            num_labels,
            Default::default(),
        );

        FNetForSequenceClassification {
            fnet,
            dropout,
            classifier,
        }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `FNetSequenceClassificationOutput` containing:
    ///   - `logits` - `Tensor` of shape (*batch size*, *num_classes*)
    ///   - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use tch::{nn, Device, Tensor, no_grad};
    /// # use rust_bert::Config;
    /// # use std::path::Path;
    /// # use tch::kind::Kind::Int64;
    /// use rust_bert::fnet::{FNetConfig, FNetForSequenceClassification};
    /// # let config_path = Path::new("path/to/config.json");
    /// # let device = Device::Cpu;
    /// # let vs = nn::VarStore::new(device);
    /// # let config = FNetConfig::from_file(config_path);
    /// let model = FNetForSequenceClassification::new(&vs.root(), &config);
    /// let (batch_size, sequence_length) = (64, 128);
    /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    /// let position_ids = Tensor::arange(sequence_length, (Int64, device))
    ///     .expand(&[batch_size, sequence_length], true);
    ///
    /// let model_output = no_grad(|| {
    ///     model
    ///         .forward_t(
    ///             Some(&input_tensor),
    ///             Some(&token_type_ids),
    ///             Some(&position_ids),
    ///             None,
    ///             false,
    ///         )
    ///         .unwrap()
    /// });
    /// ```
    pub fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeddings: Option<&Tensor>,
        train: bool,
    ) -> Result<FNetSequenceClassificationOutput, RustBertError> {
        let base_model_output = self.fnet.forward_t(
            input_ids,
            token_type_ids,
            position_ids,
            input_embeddings,
            train,
        )?;

        let logits = base_model_output
            .pooled_output
            .unwrap()
            .apply_t(&self.dropout, train)
            .apply(&self.classifier);

        Ok(FNetSequenceClassificationOutput {
            logits,
            all_hidden_states: base_model_output.all_hidden_states,
        })
    }
}

/// # FNet for multiple choices
/// Multiple choices model using a FNet base model and a linear classifier.
/// Input should be in the form `[CLS] Context [SEP] Possible choice [SEP]`. The choice is made along the batch axis,
/// assuming all elements of the batch are alternatives to be chosen from for a given context.
/// It is made of the following blocks:
/// - `fnet`: Base FNet model
/// - `dropout`: Dropout layer before the last start/end logits prediction
/// - `classifier`: Linear layer for multiple choices
pub struct FNetForMultipleChoice {
    fnet: FNetModel,
    dropout: Dropout,
    classifier: nn::Linear,
}

impl FNetForMultipleChoice {
    /// Build a new `FNetForMultipleChoice`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the FNet model
    /// * `config` - `FNetConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::fnet::{FNetConfig, FNetForMultipleChoice};
    /// use rust_bert::Config;
    /// use std::path::Path;
    /// use tch::{nn, Device};
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = FNetConfig::from_file(config_path);
    /// let fnet = FNetForMultipleChoice::new(&p.root() / "fnet", &config);
    /// ```
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetForMultipleChoice
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let fnet = FNetModel::new(p / "fnet", config, true);
        let dropout = Dropout::new(config.hidden_dropout_prob);
        let classifier = nn::linear(p / "classifier", config.hidden_size, 1, Default::default());

        FNetForMultipleChoice {
            fnet,
            dropout,
            classifier,
        }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `FNetSequenceClassificationOutput` containing:
    ///   - `logits` - `Tensor` of shape (*1*, *batch_size*) containing the logits for each of the alternatives given
    ///   - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use tch::{nn, Device, Tensor, no_grad};
    /// # use rust_bert::Config;
    /// # use std::path::Path;
    /// # use tch::kind::Kind::Int64;
    /// use rust_bert::fnet::{FNetConfig, FNetForMultipleChoice};
    /// # let config_path = Path::new("path/to/config.json");
    /// # let device = Device::Cpu;
    /// # let vs = nn::VarStore::new(device);
    /// # let config = FNetConfig::from_file(config_path);
    /// let model = FNetForMultipleChoice::new(&vs.root(), &config);
    /// let (batch_size, sequence_length) = (64, 128);
    /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    /// let position_ids = Tensor::arange(sequence_length, (Int64, device))
    ///     .expand(&[batch_size, sequence_length], true);
    ///
    /// let model_output = no_grad(|| {
    ///     model
    ///         .forward_t(
    ///             Some(&input_tensor),
    ///             Some(&token_type_ids),
    ///             Some(&position_ids),
    ///             None,
    ///             false,
    ///         )
    ///         .unwrap()
    /// });
    /// ```
    pub fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeddings: Option<&Tensor>,
        train: bool,
    ) -> Result<FNetSequenceClassificationOutput, RustBertError> {
        let (input_shape, _) =
            get_shape_and_device_from_ids_embeddings_pair(input_ids, input_embeddings)?;
        let num_choices = input_shape[1];

        let input_ids = input_ids.map(|tensor| tensor.view((-1, *tensor.size().last().unwrap())));
        let token_type_ids =
            token_type_ids.map(|tensor| tensor.view((-1, *tensor.size().last().unwrap())));
        let position_ids =
            position_ids.map(|tensor| tensor.view((-1, *tensor.size().last().unwrap())));
        let input_embeddings =
            input_embeddings.map(|tensor| tensor.view((-1, tensor.size()[2], tensor.size()[3])));

        let base_model_output = self.fnet.forward_t(
            input_ids.as_ref(),
            token_type_ids.as_ref(),
            position_ids.as_ref(),
            input_embeddings.as_ref(),
            train,
        )?;

        let logits = base_model_output
            .pooled_output
            .unwrap()
            .apply_t(&self.dropout, train)
            .apply(&self.classifier)
            .view((-1, num_choices));

        Ok(FNetSequenceClassificationOutput {
            logits,
            all_hidden_states: base_model_output.all_hidden_states,
        })
    }
}

/// # FNet for token classification (e.g. NER, POS)
/// Token-level classifier predicting a label for each token provided. Note that because of wordpiece tokenization, the labels predicted are
/// not necessarily aligned with words in the sentence.
/// It is made of the following blocks:
/// - `fnet`: Base FNet
/// - `dropout`: Dropout layer before the last token-level predictions layer
/// - `classifier`: Linear layer for token classification
pub struct FNetForTokenClassification {
    fnet: FNetModel,
    dropout: Dropout,
    classifier: nn::Linear,
}

impl FNetForTokenClassification {
    /// Build a new `FNetForTokenClassification`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the FNet model
    /// * `config` - `FNetConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::fnet::{FNetConfig, FNetForTokenClassification};
    /// use rust_bert::Config;
    /// use std::path::Path;
    /// use tch::{nn, Device};
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = FNetConfig::from_file(config_path);
    /// let fnet = FNetForTokenClassification::new(&p.root() / "fnet", &config);
    /// ```
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetForTokenClassification
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let fnet = FNetModel::new(p / "fnet", config, false);
        let dropout = Dropout::new(config.hidden_dropout_prob);
        let num_labels = config
            .id2label
            .as_ref()
            .expect("num_labels not provided in configuration")
            .len() as i64;
        let classifier = nn::linear(
            p / "classifier",
            config.hidden_size,
            num_labels,
            Default::default(),
        );

        FNetForTokenClassification {
            fnet,
            dropout,
            classifier,
        }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `FNetTokenClassificationOutput` containing:
    ///   - `logits` - `Tensor` of shape (*batch size*, *sequence_length*, *num_labels*) containing the logits for each of the input tokens and classes
    ///   - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use tch::{nn, Device, Tensor, no_grad};
    /// # use rust_bert::Config;
    /// # use std::path::Path;
    /// # use tch::kind::Kind::Int64;
    /// use rust_bert::fnet::{FNetConfig, FNetForTokenClassification};
    /// # let config_path = Path::new("path/to/config.json");
    /// # let device = Device::Cpu;
    /// # let vs = nn::VarStore::new(device);
    /// # let config = FNetConfig::from_file(config_path);
    /// let model = FNetForTokenClassification::new(&vs.root(), &config);
    /// let (batch_size, sequence_length) = (64, 128);
    /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    /// let position_ids = Tensor::arange(sequence_length, (Int64, device))
    ///     .expand(&[batch_size, sequence_length], true);
    ///
    /// let model_output = no_grad(|| {
    ///     model
    ///         .forward_t(
    ///             Some(&input_tensor),
    ///             Some(&token_type_ids),
    ///             Some(&position_ids),
    ///             None,
    ///             false,
    ///         )
    ///         .unwrap()
    /// });
    /// ```
    pub fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeddings: Option<&Tensor>,
        train: bool,
    ) -> Result<FNetTokenClassificationOutput, RustBertError> {
        let base_model_output = self.fnet.forward_t(
            input_ids,
            token_type_ids,
            position_ids,
            input_embeddings,
            train,
        )?;

        let logits = base_model_output
            .hidden_states
            .apply_t(&self.dropout, train)
            .apply(&self.classifier);

        Ok(FNetTokenClassificationOutput {
            logits,
            all_hidden_states: base_model_output.all_hidden_states,
        })
    }
}

/// # FNet for question answering
/// Extractive question-answering model based on a FNet language model. Identifies the segment of a context that answers a provided question.
/// Please note that a significant amount of pre- and post-processing is required to perform end-to-end question answering.
/// See the question answering pipeline (also provided in this crate) for more details.
/// It is made of the following blocks:
/// - `fnet`: Base FNet
/// - `qa_outputs`: Linear layer for question answering
pub struct FNetForQuestionAnswering {
    fnet: FNetModel,
    qa_outputs: nn::Linear,
}

impl FNetForQuestionAnswering {
    /// Build a new `FNetForQuestionAnswering`
    ///
    /// # Arguments
    ///
    /// * `p` - Variable store path for the root of the FNet model
    /// * `config` - `FNetConfig` object defining the model architecture
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::fnet::{FNetConfig, FNetForQuestionAnswering};
    /// use rust_bert::Config;
    /// use std::path::Path;
    /// use tch::{nn, Device};
    ///
    /// let config_path = Path::new("path/to/config.json");
    /// let device = Device::Cpu;
    /// let p = nn::VarStore::new(device);
    /// let config = FNetConfig::from_file(config_path);
    /// let fnet = FNetForQuestionAnswering::new(&p.root() / "fnet", &config);
    /// ```
    pub fn new<'p, P>(p: P, config: &FNetConfig) -> FNetForQuestionAnswering
    where
        P: Borrow<nn::Path<'p>>,
    {
        let p = p.borrow();

        let fnet = FNetModel::new(p / "fnet", config, false);
        let qa_outputs = nn::linear(p / "classifier", config.hidden_size, 2, Default::default());

        FNetForQuestionAnswering { fnet, qa_outputs }
    }

    /// Forward pass through the model
    ///
    /// # Arguments
    ///
    /// * `input_ids` - Optional input tensor of shape (*batch size*, *sequence_length*). If None, pre-computed embeddings must be provided (see `input_embeds`)
    /// * `token_type_ids` - Optional segment id of shape (*batch size*, *sequence_length*). Convention is value of 0 for the first sentence (incl. *SEP*) and 1 for the second sentence. If None set to 0.
    /// * `position_ids` - Optional position ids of shape (*batch size*, *sequence_length*). If None, will be incremented from 0.
    /// * `input_embeds` - Optional pre-computed input embeddings of shape (*batch size*, *sequence_length*, *hidden_size*). If None, input ids must be provided (see `input_ids`)
    /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference.
    ///
    /// # Returns
    ///
    /// * `FNetQuestionAnsweringOutput` containing:
    ///   - `start_logits` - `Tensor` of shape (*batch size*, *sequence_length*) containing the logits for start of the answer
    ///   - `end_logits` - `Tensor` of shape (*batch size*, *sequence_length*) containing the logits for end of the answer
    ///   - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # use tch::{nn, Device, Tensor, no_grad};
    /// # use rust_bert::Config;
    /// # use std::path::Path;
    /// # use tch::kind::Kind::Int64;
    /// use rust_bert::fnet::{FNetConfig, FNetForTokenClassification};
    /// # let config_path = Path::new("path/to/config.json");
    /// # let device = Device::Cpu;
    /// # let vs = nn::VarStore::new(device);
    /// # let config = FNetConfig::from_file(config_path);
    /// let model = FNetForTokenClassification::new(&vs.root(), &config);
    /// let (batch_size, sequence_length) = (64, 128);
    /// let input_tensor = Tensor::rand(&[batch_size, sequence_length], (Int64, device));
    /// let token_type_ids = Tensor::zeros(&[batch_size, sequence_length], (Int64, device));
    /// let position_ids = Tensor::arange(sequence_length, (Int64, device))
    ///     .expand(&[batch_size, sequence_length], true);
    ///
    /// let model_output = no_grad(|| {
    ///     model
    ///         .forward_t(
    ///             Some(&input_tensor),
    ///             Some(&token_type_ids),
    ///             Some(&position_ids),
    ///             None,
    ///             false,
    ///         )
    ///         .unwrap()
    /// });
    /// ```
    pub fn forward_t(
        &self,
        input_ids: Option<&Tensor>,
        token_type_ids: Option<&Tensor>,
        position_ids: Option<&Tensor>,
        input_embeddings: Option<&Tensor>,
        train: bool,
    ) -> Result<FNetQuestionAnsweringOutput, RustBertError> {
        let base_model_output = self.fnet.forward_t(
            input_ids,
            token_type_ids,
            position_ids,
            input_embeddings,
            train,
        )?;

        let logits = base_model_output
            .hidden_states
            .apply(&self.qa_outputs)
            .split(1, -1);
        let (start_logits, end_logits) = (&logits[0], &logits[1]);
        let start_logits = start_logits.squeeze_dim(-1);
        let end_logits = end_logits.squeeze_dim(-1);

        Ok(FNetQuestionAnsweringOutput {
            start_logits,
            end_logits,
            all_hidden_states: base_model_output.all_hidden_states,
        })
    }
}

/// Container for the FNet model output.
pub struct FNetModelOutput {
    /// Last hidden states from the model
    pub hidden_states: Tensor,
    /// Pooled output (hidden state for the first token)
    pub pooled_output: Option<Tensor>,
    /// Hidden states for all intermediate layers
    pub all_hidden_states: Option<Vec<Tensor>>,
}

/// Container for the FNet masked LM model output.
pub struct FNetMaskedLMOutput {
    /// Logits for the vocabulary items at each sequence position
    pub prediction_scores: Tensor,
    /// Hidden states for all intermediate layers
    pub all_hidden_states: Option<Vec<Tensor>>,
}

/// Container for the FNet sequence classification model output.
pub struct FNetSequenceClassificationOutput {
    /// Logits for each input (sequence) for each target class
    pub logits: Tensor,
    /// Hidden states for all intermediate layers
    pub all_hidden_states: Option<Vec<Tensor>>,
}

/// Container for the FNet token classification model output.
pub type FNetTokenClassificationOutput = FNetSequenceClassificationOutput;

/// Container for the FNet question answering model output.
pub struct FNetQuestionAnsweringOutput {
    /// Logits for the start position for token of each input sequence
    pub start_logits: Tensor,
    /// Logits for the end position for token of each input sequence
    pub end_logits: Tensor,
    /// Hidden states for all intermediate layers
    pub all_hidden_states: Option<Vec<Tensor>>,
}

#[cfg(test)]
mod test {
    use tch::Device;

    use crate::{
        resources::{RemoteResource, ResourceProvider},
        Config,
    };

    use super::*;

    #[test]
    #[ignore] // compilation is enough, no need to run
    fn fnet_model_send() {
        let config_resource = Box::new(RemoteResource::from_pretrained(FNetConfigResources::BASE));
        let config_path = config_resource.get_local_path().expect("");

        //    Set-up masked LM model
        let device = Device::cuda_if_available();
        let vs = tch::nn::VarStore::new(device);
        let config = FNetConfig::from_file(config_path);

        let _: Box<dyn Send> = Box::new(FNetModel::new(&vs.root(), &config, true));
    }
}