1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
// Copyright 2019-present Microsoft
// Copyright 2020-present, the HuggingFace Inc. team.
// Copyright 2020 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Multi-turn dialogue
//! Conversation model based on Microsoft's [DialoGPT](https://github.com/microsoft/DialoGPT).
//! This pipeline allows the generation of single or multi-turn conversations between a human and a model.
//! The DialoGPT's page states that
//! > The human evaluation results indicate that the response generated from DialoGPT is comparable to human response quality
//! > under a single-turn conversation Turing test. ([DialoGPT repository](https://github.com/microsoft/DialoGPT))
//!
//!
//! The dependencies will be downloaded to the user's home directory, under ~/.cache/.rustbert/dialgpt-medium
//!
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel};
//! let conversation_model = ConversationModel::new(Default::default())?;
//! let mut conversation_manager = ConversationManager::new();
//!
//! let conversation_id =
//!     conversation_manager.create("Going to the movies tonight - any suggestions?");
//! let output = conversation_model.generate_responses(&mut conversation_manager);
//! # Ok(())
//! # }
//! ```
//!
//! Example output: \
//! ```no_run
//! # let output =
//! "The Big Lebowski."
//! # ;
//! ```
//!
//! # Disclaimer
//! The authors of this repository are not responsible for any generation
//! from the 3rd party utilization of the pretrained system.
use crate::common::error::RustBertError;
use crate::gpt2::GPT2Generator;
use crate::pipelines::common::{ModelType, TokenizerOption};
use crate::pipelines::generation_utils::private_generation_utils::PrivateLanguageGenerator;
use crate::pipelines::generation_utils::{GenerateConfig, LanguageGenerator};
use crate::resources::ResourceProvider;
use std::collections::HashMap;
use tch::{Device, Kind, Tensor};
use uuid::Uuid;

#[cfg(feature = "remote")]
use crate::{
    gpt2::{Gpt2ConfigResources, Gpt2MergesResources, Gpt2ModelResources, Gpt2VocabResources},
    resources::RemoteResource,
};

/// # Configuration for multi-turn classification
/// Contains information regarding the model to load, mirrors the GenerationConfig, with a
/// different set of default parameters and sets the device to place the model on.
pub struct ConversationConfig {
    /// Model type
    pub model_type: ModelType,
    /// Model weights resource (default: DialoGPT-medium)
    pub model_resource: Box<dyn ResourceProvider + Send>,
    /// Config resource (default: DialoGPT-medium)
    pub config_resource: Box<dyn ResourceProvider + Send>,
    /// Vocab resource (default: DialoGPT-medium)
    pub vocab_resource: Box<dyn ResourceProvider + Send>,
    /// Merges resource (default: DialoGPT-medium)
    pub merges_resource: Box<dyn ResourceProvider + Send>,
    /// Minimum sequence length (default: 0)
    pub min_length: i64,
    /// Maximum sequence length (default: 20)
    pub max_length: i64,
    /// Minimum free length available for generated responses (default: 32)
    pub min_length_for_response: i64,
    /// Sampling flag. If true, will perform top-k and/or nucleus sampling on generated tokens, otherwise greedy (deterministic) decoding (default: true)
    pub do_sample: bool,
    /// Early stopping flag indicating if the beam search should stop as soon as `num_beam` hypotheses have been generated (default: false)
    pub early_stopping: bool,
    /// Number of beams for beam search (default: 5)
    pub num_beams: i64,
    /// Temperature setting. Values higher than 1 will improve originality at the risk of reducing relevance (default: 1.0)
    pub temperature: f64,
    /// Top_k values for sampling tokens. Value higher than 0 will enable the feature (default: 0)
    pub top_k: i64,
    /// Top_p value for [Nucleus sampling, Holtzman et al.](http://arxiv.org/abs/1904.09751). Keep top tokens until cumulative probability reaches top_p (default: 0.9)
    pub top_p: f64,
    /// Repetition penalty (mostly useful for CTRL decoders). Values higher than 1 will penalize tokens that have been already generated. (default: 1.0)
    pub repetition_penalty: f64,
    /// Exponential penalty based on the length of the hypotheses generated (default: 1.0)
    pub length_penalty: f64,
    /// Number of allowed repetitions of n-grams. Values higher than 0 turn on this feature (default: 3)
    pub no_repeat_ngram_size: i64,
    /// Number of sequences to return for each prompt text (default: 1)
    pub num_return_sequences: i64,
    /// Number of beam groups for diverse beam generation. If provided and higher than 1, will split the beams into beam subgroups leading to more diverse generation.
    pub num_beam_groups: Option<i64>,
    /// Diversity penalty for diverse beam search. High values will enforce more difference between beam groups (default: 5.5)
    pub diversity_penalty: Option<f64>,
    /// Device to place the model on (default: CUDA/GPU when available)
    pub device: Device,
}

#[cfg(feature = "remote")]
impl Default for ConversationConfig {
    fn default() -> ConversationConfig {
        ConversationConfig {
            model_type: ModelType::GPT2,
            model_resource: Box::new(RemoteResource::from_pretrained(
                Gpt2ModelResources::DIALOGPT_MEDIUM,
            )),
            config_resource: Box::new(RemoteResource::from_pretrained(
                Gpt2ConfigResources::DIALOGPT_MEDIUM,
            )),
            vocab_resource: Box::new(RemoteResource::from_pretrained(
                Gpt2VocabResources::DIALOGPT_MEDIUM,
            )),
            merges_resource: Box::new(RemoteResource::from_pretrained(
                Gpt2MergesResources::DIALOGPT_MEDIUM,
            )),
            min_length: 0,
            max_length: 1000,
            min_length_for_response: 64,
            do_sample: true,
            early_stopping: false,
            num_beams: 1,
            temperature: 1.0,
            top_k: 50,
            top_p: 0.9,
            repetition_penalty: 1.0,
            length_penalty: 1.0,
            no_repeat_ngram_size: 0,
            num_return_sequences: 1,
            num_beam_groups: None,
            diversity_penalty: None,
            device: Device::cuda_if_available(),
        }
    }
}

impl From<ConversationConfig> for GenerateConfig {
    fn from(config: ConversationConfig) -> GenerateConfig {
        GenerateConfig {
            model_resource: config.model_resource,
            config_resource: config.config_resource,
            merges_resource: config.merges_resource,
            vocab_resource: config.vocab_resource,
            min_length: config.min_length,
            max_length: config.max_length,
            do_sample: config.do_sample,
            early_stopping: config.early_stopping,
            num_beams: config.num_beams,
            temperature: config.temperature,
            top_k: config.top_k,
            top_p: config.top_p,
            repetition_penalty: config.repetition_penalty,
            length_penalty: config.length_penalty,
            no_repeat_ngram_size: config.no_repeat_ngram_size,
            num_return_sequences: config.num_return_sequences,
            num_beam_groups: config.num_beam_groups,
            diversity_penalty: config.diversity_penalty,
            device: config.device,
        }
    }
}

#[derive(Debug, Clone)]
/// Data structure keeping track of a conversation in the system. It contains past user inputs and
/// generated answers, a history of the tokens generated and a placeholder for new user inputs to be
/// processed by the system if submitted for prediction
pub struct Conversation {
    /// Past user inputs that have already been processed
    pub past_user_inputs: Vec<String>,
    /// Past system generated responses
    pub generated_responses: Vec<String>,
    /// New user input that needs to be processed
    pub new_user_input: Option<String>,
    ///  History of the tokens passed as an input and generated so far used as context for next turn generation
    pub history: Vec<Vec<i64>>,
}

impl Conversation {
    /// Build a new `Conversation` with an initial user input
    ///
    /// # Arguments
    ///
    /// * `text` - `String` with the initial user input to start a conversation
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let conversation = Conversation::new("Hi there!");
    /// ```
    pub fn new(text: &str) -> Conversation {
        Conversation {
            past_user_inputs: vec![],
            generated_responses: vec![],
            new_user_input: Some(text.to_string()),
            history: vec![],
        }
    }

    /// Build a new `Conversation` placeholder without user input
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let conversation = Conversation::new_empty();
    /// ```
    pub fn new_empty() -> Conversation {
        Conversation {
            past_user_inputs: vec![],
            generated_responses: vec![],
            new_user_input: None,
            history: vec![],
        }
    }

    /// Adds a new user input to the conversation. This method returns an error if an unprocessed
    /// user input already exists
    ///
    /// # Arguments
    ///
    /// * `text` - `&str` with the additional user input to continue a conversation
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let mut conversation = Conversation::new_empty();
    /// conversation.add_user_input("Hi there!");
    /// ```
    pub fn add_user_input(&mut self, text: &str) -> Result<(), RustBertError> {
        if self.new_user_input.is_some() {
            Err(RustBertError::ValueError(
                "User input already provided for this conversation".into(),
            ))
        } else {
            self.new_user_input = Some(text.to_string());
            Ok(())
        }
    }

    /// Adds a new user input to the conversation. If an unprocessed user input already exists,
    /// its contents are overwritten by the new value provided.
    ///
    /// # Arguments
    ///
    /// * `text` - `&str` with the additional user input to continue a conversation
    ///
    /// # Returns
    ///
    /// * `Option<String>` containing overwritten string if applicable
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let mut conversation = Conversation::new_empty();
    /// conversation.add_user_input("This input will not be used");
    /// let unused_string = conversation.add_user_input_with_overwrite("Hi there!");
    /// ```
    pub fn add_user_input_with_overwrite(&mut self, text: &str) -> Option<String> {
        let old_user_input = if self.new_user_input.is_some() {
            self.new_user_input.clone()
        } else {
            None
        };
        self.new_user_input = Some(text.to_string());
        old_user_input
    }

    /// Returns `true` if the conversation contains new user inputs to process
    ///
    /// # Returns
    ///
    /// * `bool` flag indicating if the conversation contains new inputs to process
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let mut conversation = Conversation::new_empty();
    /// let false_value = conversation.contains_new_input();
    /// conversation.add_user_input("This input will not be used");
    /// let true_value = conversation.contains_new_input();
    /// ```
    pub fn contains_new_input(&self) -> bool {
        self.new_user_input.is_some()
    }

    /// Marks the conversation as processed and moves the user input that was up for
    /// processing to the past user inputs.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let mut conversation = Conversation::new_empty();
    /// let false_value = conversation.contains_new_input();
    /// conversation.add_user_input("This input will not be used");
    /// let true_value = conversation.contains_new_input();
    /// conversation.mark_processed();
    /// let false_value = conversation.contains_new_input();
    /// assert_eq!(conversation.past_user_inputs.len(), 1usize);
    /// ```
    pub fn mark_processed(&mut self) {
        if self.new_user_input.is_some() {
            self.past_user_inputs
                .push(self.new_user_input.clone().unwrap());
            self.new_user_input = None;
        }
    }

    /// Returns the last user input provided (including non-processed inputs).
    ///
    /// # Returns
    ///
    /// * `Option<&str>` representation of the last user input provided
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let mut conversation = Conversation::new_empty();
    /// let none_value = conversation.get_last_input();
    /// conversation.add_user_input("This input will not be used");
    /// let last_provided_input = conversation.get_last_input();
    /// assert_eq!(last_provided_input, Some("This input will not be used"));
    /// ```
    pub fn get_last_input(&self) -> Option<&str> {
        if self.new_user_input.is_some() {
            Some(self.new_user_input.as_ref().unwrap().as_str())
        } else if !self.past_user_inputs.is_empty() {
            Some(self.past_user_inputs.last().unwrap().as_str())
        } else {
            None
        }
    }

    /// Returns the last response generated by the system.
    ///
    /// # Returns
    ///
    /// * `Option<&str>` representation of the last response generated by the system.
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::Conversation;
    ///
    /// let mut conversation = Conversation::new("Hi There");
    /// let non_value = conversation.get_last_response();
    /// ```
    pub fn get_last_response(&self) -> Option<&str> {
        if !self.generated_responses.is_empty() {
            Some(self.generated_responses.last().unwrap().as_str())
        } else {
            None
        }
    }

    fn append(&mut self, text: &str, ids: &[i64]) {
        match &self.new_user_input {
            Some(_) => {
                self.mark_processed();
                if self.past_user_inputs.len() >= self.generated_responses.len() {
                    self.generated_responses.push(text.to_string());
                } else {
                    let _ = self.add_user_input(text);
                }
            }
            None => {
                let _ = self.add_user_input(text);
            }
        }
        self.history.push(ids.to_vec());
    }

    /// Initializes a conversation form a prior state. It is assumed that a conversation always
    /// start from a user interaction.
    ///
    /// # Arguments
    /// - texts: sequence of strings, alternating between past user inputs and past generated responses.
    /// - ids: sequence of sequence of ids, alternating between past user inputs and past generated responses.
    /// These can be generated via a `ConversationModel`'s `encode_prompts`.
    ///
    /// # Example:
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel};
    /// use rust_bert::pipelines::generation_utils::LanguageGenerator;
    /// let model = ConversationModel::new(Default::default())?;
    ///
    /// let mut conversation_manager = ConversationManager::new();
    /// let history = [
    ///     "Going to the movies tonight - any suggestions?",
    ///     "The Big Lebowski",
    ///     "Is it an action movie?",
    /// ];
    /// let encoded_history = model.encode_prompts(&history);
    ///
    /// let conversation_1_id = conversation_manager.create_empty();
    /// let _ = conversation_manager
    ///     .get(&conversation_1_id)
    ///     .unwrap()
    ///     .load_from_history(&history, &encoded_history);
    /// # Ok(())
    /// # }
    /// ```
    pub fn load_from_history<S, SI>(&mut self, texts: &[S], ids: &[SI])
    where
        S: AsRef<str>,
        SI: AsRef<[i64]>,
    {
        for (round_text, round_ids) in texts.iter().zip(ids.iter()) {
            self.append(round_text.as_ref(), round_ids.as_ref());
        }

        if texts.len() / 2 == 1 {
            self.history.pop();
        }
    }
}

/// Data structure allowing the management of conversations and main input to the dialogue model.
/// It contains a `HashMap` of conversations with `UUID` keys
#[derive(Debug)]
pub struct ConversationManager {
    conversations: HashMap<Uuid, Conversation>,
}

impl ConversationManager {
    /// Build a new `ConversationManager`
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::ConversationManager;
    ///
    /// let conversation_manager = ConversationManager::new();
    /// ```
    pub fn new() -> ConversationManager {
        ConversationManager {
            conversations: HashMap::new(),
        }
    }

    /// Returns a list of the active conversations (containing new inputs to be processed by the model)
    ///
    /// # Returns
    ///
    /// * `(Vec<&Uuid>, Vec<&mut Conversation>)` Tuple of vectors with the active `UUID` and `Conversations`
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation = Conversation::new("Hi there!");
    /// let empty_conversation = Conversation::new_empty();
    /// let conversation_id = conversation_manager.add(conversation);
    /// let empty_conversation_id = conversation_manager.add(empty_conversation);
    ///
    /// let active_conversations = conversation_manager.get_active_conversations();
    /// assert_eq!(active_conversations.0.len(), 1usize);
    /// ```
    pub fn get_active_conversations(&mut self) -> (Vec<&Uuid>, Vec<&mut Conversation>) {
        let mut active_uuid = vec![];
        let mut active_conversations = vec![];
        for (uuid, conversation) in self.conversations.iter_mut() {
            if conversation.new_user_input.is_some() {
                active_uuid.push(uuid);
                active_conversations.push(conversation)
            }
        }
        (active_uuid, active_conversations)
    }

    /// Returns a mutable reference to the conversation wih the provided UUID
    ///
    /// # Arguments
    ///
    /// * `uuid` - `&Uuid` of the conversation to retrieve
    ///
    /// # Returns
    ///
    /// * `Option<&mut Conversation>` Optional mutable reference to the conversation matching the UUID provided
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation = Conversation::new("Hi there!");
    /// let conversation_id = conversation_manager.add(conversation);
    ///
    /// let conversation_ref = conversation_manager.get(&conversation_id);
    /// ```
    pub fn get(&mut self, uuid: &Uuid) -> Option<&mut Conversation> {
        self.conversations.get_mut(uuid)
    }

    /// Returns a HashMap containing references to all conversations stored in the manager
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation = Conversation::new("Hi there!");
    /// let conversation_id = conversation_manager.add(conversation);
    ///
    /// let all_conversations = conversation_manager.get_all();
    /// ```
    pub fn get_all(&mut self) -> HashMap<&Uuid, &Conversation> {
        let mut output = HashMap::with_capacity(self.conversations.len());
        for (uuid, conversation) in self.conversations.iter() {
            output.insert(uuid, conversation);
        }
        output
    }

    /// Creates a conversation and add it to the conversation manager
    ///
    /// # Arguments
    ///
    /// * `text` - `&str` string slice with an original user input
    ///
    /// # Returns
    ///
    /// * `Uuid` for the conversation created
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation_id = conversation_manager.create("Hi there!");
    /// ```
    pub fn create(&mut self, text: &str) -> Uuid {
        let conversation = Conversation::new(text);
        self.add(conversation)
    }

    /// Creates an empty conversation and add it to the conversation manager
    ///
    /// # Returns
    ///
    /// * `Uuid` for the conversation created
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation_id = conversation_manager.create_empty();
    /// ```
    pub fn create_empty(&mut self) -> Uuid {
        let conversation = Conversation::new_empty();
        self.add(conversation)
    }

    /// Adds an existing conversation to the conversation manager
    ///
    /// # Arguments
    ///
    /// * `conversation` - `Conversation` to be added to the conversation manager
    ///
    /// # Returns
    ///
    /// * `Uuid` for the conversation created
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation = Conversation::new("Hi there!");
    /// let conversation_id = conversation_manager.add(conversation);
    /// ```
    pub fn add(&mut self, conversation: Conversation) -> Uuid {
        let mut uuid = Uuid::new_v4();
        while self.conversations.contains_key(&uuid) {
            uuid = Uuid::new_v4();
        }
        self.conversations.insert(uuid, conversation);
        uuid
    }

    /// Deregister a conversation from the conversation manager
    ///
    /// # Arguments
    ///
    /// * `uuid` - `&Uuid` of the conversation to deregister from the conversation manager
    ///
    /// # Returns
    ///
    /// * `Option<Conversation>` de-registered conversation
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation_id = conversation_manager.create("Hi there!");
    /// conversation_manager.remove(&conversation_id);
    /// ```
    pub fn remove(&mut self, uuid: &Uuid) -> Option<Conversation> {
        self.conversations.remove(uuid)
    }

    /// Clear all conversations from the conversation manager, and returns the conversations and their
    /// former UUID.
    ///
    /// # Returns
    ///
    /// * `HashMap<Uuid, Conversation>` de-registered conversations
    ///
    /// # Example
    ///
    /// ```no_run
    /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager};
    ///
    /// let mut conversation_manager = ConversationManager::new();
    ///
    /// let conversation_id = conversation_manager.create("Hi there!");
    /// let conversations = conversation_manager.clear();
    /// ```
    pub fn clear(&mut self) -> HashMap<Uuid, Conversation> {
        let mut output = HashMap::with_capacity(self.conversations.len());
        for (uuid, conversation) in self.conversations.iter() {
            output.insert(*uuid, conversation.clone());
        }
        self.conversations = HashMap::new();
        output
    }
}

impl Default for ConversationManager {
    fn default() -> Self {
        Self::new()
    }
}

/// # Abstraction that holds one particular conversation model, for any of the supported models
pub enum ConversationOption {
    /// Conversation based on GPT2 model
    GPT2(GPT2Generator),
}

impl ConversationOption {
    pub fn new(config: ConversationConfig) -> Result<Self, RustBertError> {
        match config.model_type {
            ModelType::GPT2 => Ok(ConversationOption::GPT2(GPT2Generator::new(config.into())?)),
            _ => Err(RustBertError::InvalidConfigurationError(
                "GPT2 is currently the only supported model for conversation generation"
                    .to_string(),
            )),
        }
    }

    pub fn get_eos_id(&self) -> Result<i64, RustBertError> {
        match self {
            Self::GPT2(model_ref) => {
                Ok(*model_ref.get_eos_ids().as_ref().unwrap().first().unwrap())
            }
        }
    }

    pub fn get_tokenizer(&self) -> &TokenizerOption {
        match self {
            Self::GPT2(model_ref) => model_ref._get_tokenizer(),
        }
    }

    /// Returns the `ModelType` for this ConversationOption
    pub fn model_type(&self) -> ModelType {
        match *self {
            Self::GPT2(_) => ModelType::GPT2,
        }
    }

    /// Interface method to generate_from_ids_and_past() of the particular models.
    pub fn generate_from_ids_and_past(
        &self,
        input_ids: Tensor,
        attention_mask: Option<Tensor>,
    ) -> Vec<Vec<i64>> {
        match *self {
            Self::GPT2(ref model) => model
                .generate_from_ids_and_past(input_ids, attention_mask, None)
                .into_iter()
                .map(|output| output.indices)
                .collect(),
        }
    }
}

/// # Conversation model
/// Processes a ConversationManager and generate system responses for active conversations.
pub struct ConversationModel {
    model: ConversationOption,
    eos_token_id: i64,
    max_allowed_context_length: i64,
    device: Device,
}

impl ConversationModel {
    /// Build a new `ConversationModel`
    ///
    /// # Arguments
    ///
    /// * `conversation_config` - `ConversationConfig` object containing the resource references (model, vocabulary, configuration), conversation options and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::conversation::ConversationModel;
    ///
    /// let conversation_model = ConversationModel::new(Default::default())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(
        conversation_config: ConversationConfig,
    ) -> Result<ConversationModel, RustBertError> {
        let max_allowed_length =
            conversation_config.max_length - conversation_config.min_length_for_response;
        let device = conversation_config.device;
        let model = ConversationOption::new(conversation_config)?;
        let eos_token_id = model.get_eos_id()?;
        Ok(ConversationModel {
            model,
            eos_token_id,
            max_allowed_context_length: max_allowed_length,
            device,
        })
    }

    /// Perform a multi-turn conversation based on user input
    ///
    /// # Arguments
    ///
    /// * `conversation_manager` - `&mut ConversationManager` Conversation manager keeping track of active conversations
    ///
    /// # Returns
    /// * `HashMap<&Uuid, &str>` Responses from the model for each active conversation, referenced by Uuid
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel};
    /// use rust_bert::pipelines::generation_utils::LanguageGenerator;
    /// let model = ConversationModel::new(Default::default())?;
    ///
    /// let mut conversation_manager = ConversationManager::new();
    /// conversation_manager.create("Hello, how are you?");
    ///
    /// let output = model.generate_responses(&mut conversation_manager);
    /// # Ok(())
    /// # }
    /// ```
    pub fn generate_responses<'a>(
        &self,
        conversation_manager: &'a mut ConversationManager,
    ) -> HashMap<&'a Uuid, &'a str> {
        let (active_uuid, active_conversations) = conversation_manager.get_active_conversations();
        if !active_uuid.is_empty() {
            let texts = active_conversations
                .iter()
                .map(|c| c.new_user_input.as_ref().unwrap().as_str())
                .collect::<Vec<&str>>();

            let history = active_conversations
                .iter()
                .map(|c| c.history.iter().flatten().copied().collect())
                .collect::<Vec<Vec<i64>>>();

            let prompt_ids = self.encode_prompts(texts.as_ref());
            let (input_tensor, attention_mask) =
                self.concat_input_history(prompt_ids.as_ref(), history);
            let input_length = *input_tensor.size().last().unwrap() as usize;
            let mut generated = self
                .model
                .generate_from_ids_and_past(input_tensor, Some(attention_mask));
            let removed_padding_quantities = self.clean_padding_indices(&mut generated);

            let mut output = HashMap::with_capacity(active_uuid.len());

            for (
                ((conversation, (generated_sequence, conversation_promp_ids)), uuid),
                removed_padding,
            ) in active_conversations
                .into_iter()
                .zip(generated.into_iter().zip(prompt_ids.into_iter()))
                .zip(active_uuid.into_iter())
                .zip(removed_padding_quantities.into_iter())
            {
                let generated_response = &generated_sequence[input_length - removed_padding.0..];
                conversation
                    .generated_responses
                    .push(
                        self.model
                            .get_tokenizer()
                            .decode(generated_response, true, true),
                    );
                conversation.history.push(conversation_promp_ids);
                conversation.history.push(generated_response.to_vec());
                conversation.mark_processed();
                output.insert(uuid, conversation.get_last_response().unwrap());
            }
            output
        } else {
            HashMap::new()
        }
    }

    fn clean_padding_indices(&self, model_output: &mut Vec<Vec<i64>>) -> Vec<(usize, usize)> {
        // In case inputs are sent as batch, this cleans the padding indices in the history for shorter outputs
        let pad_token = self
            .model
            .get_tokenizer()
            .get_pad_id()
            .unwrap_or(self.eos_token_id);
        let mut removed_tokens = Vec::with_capacity(model_output.len());
        for sequence_history in model_output {
            let index_end = sequence_history
                .iter()
                .rev()
                .position(|&r| r != pad_token)
                .unwrap();
            let index_start = sequence_history
                .iter()
                .position(|&r| r != pad_token)
                .unwrap();
            if index_end > 0 {
                sequence_history.drain(sequence_history.len() - index_end + 1..);
            }
            sequence_history.drain(..index_start);
            removed_tokens.push((index_start, index_end));
        }
        removed_tokens
    }

    fn concat_input_history(
        &self,
        inputs: &[Vec<i64>],
        history: Vec<Vec<i64>>,
    ) -> (Tensor, Tensor) {
        // Concatenates the history token indices with new user input
        let pad_token = self
            .model
            .get_tokenizer()
            .get_pad_id()
            .unwrap_or(self.eos_token_id);

        assert_eq!(
            inputs.len(),
            history.len(),
            "Length of inputs should equal length of history"
        );

        let mut concatenated_inputs = Vec::with_capacity(inputs.len());
        for (input, history) in inputs.iter().zip(history.iter()) {
            let mut concatenated_element = Vec::with_capacity(input.len() + history.len());
            concatenated_element.extend_from_slice(history);
            concatenated_element.extend_from_slice(input);
            concatenated_inputs.push(concatenated_element);
        }

        let truncated_concatenated_inputs = concatenated_inputs
            .iter()
            .map(|input| {
                if input.len() > self.max_allowed_context_length as usize {
                    let start = self.get_truncated_input_index(
                        input,
                        self.max_allowed_context_length as usize,
                        pad_token,
                    );
                    &input[start..]
                } else {
                    input.as_slice()
                }
            })
            .collect::<Vec<&[i64]>>();

        let max_len = truncated_concatenated_inputs
            .iter()
            .map(|input| input.len())
            .max()
            .unwrap();

        let attention_mask = Tensor::ones(
            &[inputs.len() as i64, max_len as i64],
            (Kind::Int8, self.device),
        );

        let concatenated_inputs = truncated_concatenated_inputs
            .into_iter()
            .enumerate()
            .map(|(input_idx, input)| {
                let _ = attention_mask
                    .get(input_idx as i64)
                    .slice(0, 0, (max_len - input.len()) as i64, 1)
                    .fill_(0);
                let mut padded_input = vec![pad_token; max_len - input.len()];
                padded_input.extend(input);
                padded_input
            })
            .map(|tokens| Tensor::of_slice(&tokens).to(self.device))
            .collect::<Vec<Tensor>>();

        (Tensor::stack(&concatenated_inputs, 0), attention_mask)
    }

    fn get_truncated_input_index(
        &self,
        history: &[i64],
        max_length: usize,
        pad_token: i64,
    ) -> usize {
        let start_length = history.len();
        let eos_indices: Vec<usize> = history
            .iter()
            .enumerate()
            .filter(|(i, &e)| {
                (e == pad_token)
                    & (*i != start_length - 1)
                    & ((start_length as isize - max_length as isize - *i as isize) < 0)
            })
            .map(|(i, _)| i + 1)
            .collect();

        // Return the position of the first EOS index that fits the max length requirement.
        // If it does not exist, no solution exists and truncate text at a non-EOS position
        *eos_indices.first().unwrap_or(&(start_length - max_length))
    }

    /// Encodes prompts into Vectors of indices to be processed by the model. This method may be used to
    /// initialize the history of a conversation with a prior state.
    ///
    /// # Example:
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel};
    /// use rust_bert::pipelines::generation_utils::LanguageGenerator;
    /// let model = ConversationModel::new(Default::default())?;
    /// let history = [
    ///     "Going to the movies tonight - any suggestions?",
    ///     "The Big Lebowski",
    ///     "Is it an action movie?",
    /// ];
    /// let encoded_history = model.encode_prompts(&history);
    /// # Ok(())
    /// # }
    /// ```
    pub fn encode_prompts(&self, texts: &[&str]) -> Vec<Vec<i64>> {
        // Encode the user prompt into token ids
        let tokens = self.model.get_tokenizer().tokenize_list(texts);

        tokens
            .into_iter()
            .map(|prompt_tokens| {
                self.model
                    .get_tokenizer()
                    .convert_tokens_to_ids(&prompt_tokens)
            })
            .map(|mut tokens| {
                tokens.truncate(self.max_allowed_context_length as usize - 1);
                tokens.push(self.eos_token_id);
                tokens
            })
            .collect::<Vec<Vec<i64>>>()
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[ignore] // no need to run, compilation is enough to verify it is Send
    fn test() {
        let config = ConversationConfig::default();
        let _: Box<dyn Send> = Box::new(ConversationModel::new(config));
    }
}