1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
//! # T5 (Text-To-Text Transfer Transformer) //! //! Implementation of the T5 language model ([Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/abs/1910.10683) Raffel, Shazeer, Roberts, Lee, Narang, Matena, Zhou, Li, Liu, 2019). //! The base model is implemented in the `t5_model::T5Model` struct. This model includes a language model head: `t5_model::T5ForConditionalGeneration` //! implementing the common `generation_utils::LMHeadModel` trait shared between the models used for generation (see `pipelines` for more information). //! //! # Model set-up and pre-trained weights loading //! //! A full working example (translation) is provided in `examples/t5`, run with `cargo run --example t5`. //! All models expect the following resources: //! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers) //! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format. //! - `T5Tokenizer` using a `spiece.model` sentence piece model //! //! Pretrained models for a number of language pairs are available and can be downloaded using RemoteResources. //! //! ```no_run //! # fn main() -> anyhow::Result<()> { //! # //! use tch::{nn, Device}; //! # use std::path::PathBuf; //! use rust_bert::resources::{LocalResource, Resource}; //! use rust_bert::t5::{T5Config, T5ForConditionalGeneration}; //! use rust_bert::Config; //! use rust_tokenizers::tokenizer::T5Tokenizer; //! //! let config_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/config.json"), //! }); //! let sentence_piece_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/spiece.model"), //! }); //! let weights_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/model.ot"), //! }); //! let config_path = config_resource.get_local_path()?; //! let spiece_path = sentence_piece_resource.get_local_path()?; //! let weights_path = weights_resource.get_local_path()?; //! //! let device = Device::cuda_if_available(); //! let mut vs = nn::VarStore::new(device); //! let tokenizer = T5Tokenizer::from_file(spiece_path.to_str().unwrap(), true); //! let config = T5Config::from_file(config_path); //! let t5_model = T5ForConditionalGeneration::new(&vs.root(), &config, false, false); //! vs.load(weights_path)?; //! //! # Ok(()) //! # } //! ``` mod attention; mod encoder; mod layer_norm; mod t5_model; pub use attention::LayerState; pub use t5_model::{ T5Config, T5ConfigResources, T5ForConditionalGeneration, T5Generator, T5Model, T5ModelOutput, T5ModelResources, T5Prefix, T5VocabResources, };