1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Sentiment Analysis pipeline //! Predicts the binary sentiment for a sentence. By default, the dependencies for this //! model will be downloaded for a DistilBERT model finetuned on SST-2. //! Customized DistilBERT models can be loaded by overwriting the resources in the configuration. //! The dependencies will be downloaded to the user's home directory, under ~/.cache/.rustbert/distilbert-sst2 //! //! ```no_run //! use rust_bert::pipelines::sentiment::SentimentModel; //! //! # fn main() -> anyhow::Result<()> { //! let sentiment_classifier = SentimentModel::new(Default::default())?; //! let input = [ //! "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.", //! "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...", //! "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.", //! ]; //! let output = sentiment_classifier.predict(&input); //! # Ok(()) //! # } //! ``` //! (Example courtesy of [IMDb](http://www.imdb.com)) //! //! Output: \ //! ```no_run //! # use rust_bert::pipelines::sentiment::Sentiment; //! # use rust_bert::pipelines::sentiment::SentimentPolarity::{Positive, Negative}; //! # let output = //! [ //! Sentiment { //! polarity: Positive, //! score: 0.998, //! }, //! Sentiment { //! polarity: Negative, //! score: 0.992, //! }, //! Sentiment { //! polarity: Positive, //! score: 0.999, //! }, //! ] //! # ; //! ``` use crate::common::error::RustBertError; use crate::pipelines::sequence_classification::{ SequenceClassificationConfig, SequenceClassificationModel, }; #[derive(Debug, PartialEq)] /// Enum with the possible sentiment polarities. Note that the pre-trained SST2 model does not include neutral sentiment. pub enum SentimentPolarity { Positive, Negative, } #[derive(Debug)] /// Sentiment returned by the model. pub struct Sentiment { /// Polarity of the sentiment pub polarity: SentimentPolarity, /// Confidence score pub score: f64, } type SentimentConfig = SequenceClassificationConfig; /// # SentimentClassifier to perform sentiment analysis pub struct SentimentModel { sequence_classification_model: SequenceClassificationModel, } impl SentimentModel { /// Build a new `SentimentModel` /// /// # Arguments /// /// * `sentiment_config` - `SentimentConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::sentiment::SentimentModel; /// /// let sentiment_model = SentimentModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new(sentiment_config: SentimentConfig) -> Result<SentimentModel, RustBertError> { let sequence_classification_model = SequenceClassificationModel::new(sentiment_config)?; Ok(SentimentModel { sequence_classification_model, }) } /// Extract sentiment form an array of text inputs /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract the sentiment from. /// /// # Returns /// * `Vec<Sentiment>` Sentiments extracted from texts. /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::sentiment::SentimentModel; /// /// let sentiment_classifier = SentimentModel::new(Default::default())?; /// /// let input = [ /// "Probably my all-time favorite movie, a story of selflessness, sacrifice and dedication to a noble cause, but it's not preachy or boring.", /// "This film tried to be too many things all at once: stinging political satire, Hollywood blockbuster, sappy romantic comedy, family values promo...", /// "If you like original gut wrenching laughter you will like this movie. If you are young or old then you will love this movie, hell even my mom liked it.", /// ]; /// /// let output = sentiment_classifier.predict(&input); /// # Ok(()) /// # } /// ``` pub fn predict<'a, S>(&self, input: S) -> Vec<Sentiment> where S: AsRef<[&'a str]>, { let labels = self.sequence_classification_model.predict(input); let mut sentiments = Vec::with_capacity(labels.len()); for label in labels { let polarity = if label.id == 1 { SentimentPolarity::Positive } else { SentimentPolarity::Negative }; sentiments.push(Sentiment { polarity, score: label.score, }) } sentiments } } #[cfg(test)] mod test { use super::*; #[test] #[ignore] // no need to run, compilation is enough to verify it is Send fn test() { let config = SentimentConfig::default(); let _: Box<dyn Send> = Box::new(SentimentModel::new(config)); } }