1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//     http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Named Entity Recognition pipeline
//! Extracts entities (Person, Location, Organization, Miscellaneous) from text.
//! Pretrained models are available for the following languages:
//! - English
//! - German
//! - Spanish
//! - Dutch
//!
//! The default NER mode is an English BERT cased large model finetuned on CoNNL03, contributed by the [MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz)
//! All resources for this model can be downloaded using the Python utility script included in this repository.
//! 1. Set-up a Python virtual environment and install dependencies (in ./requirements.txt)
//! 2. Run the conversion script python /utils/download-dependencies_bert_ner.py.
//! The dependencies will be downloaded to the user's home directory, under ~/rustbert/bert-ner
//!
//! The example below illustrate how to run the model for the default English NER model
//! ```no_run
//! use rust_bert::pipelines::ner::NERModel;
//! # fn main() -> anyhow::Result<()> {
//! let ner_model = NERModel::new(Default::default())?;
//!
//! let input = [
//!     "My name is Amy. I live in Paris.",
//!     "Paris is a city in France.",
//! ];
//! let output = ner_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! Output: \
//! ```no_run
//! # use rust_bert::pipelines::question_answering::Answer;
//! # use rust_bert::pipelines::ner::Entity;
//! # let output =
//! [
//!     Entity {
//!         word: String::from("Amy"),
//!         score: 0.9986,
//!         label: String::from("I-PER"),
//!     },
//!     Entity {
//!         word: String::from("Paris"),
//!         score: 0.9985,
//!         label: String::from("I-LOC"),
//!     },
//!     Entity {
//!         word: String::from("Paris"),
//!         score: 0.9988,
//!         label: String::from("I-LOC"),
//!     },
//!     Entity {
//!         word: String::from("France"),
//!         score: 0.9993,
//!         label: String::from("I-LOC"),
//!     },
//! ]
//! # ;
//! ```
//!
//! To run the pipeline for another language, change the NERModel configuration from its default:
//!
//! ```no_run
//! use rust_bert::pipelines::common::ModelType;
//! use rust_bert::pipelines::ner::NERModel;
//! use rust_bert::pipelines::token_classification::TokenClassificationConfig;
//! use rust_bert::resources::{RemoteResource, Resource};
//! use rust_bert::roberta::{
//!     RobertaConfigResources, RobertaModelResources, RobertaVocabResources,
//! };
//! use tch::Device;
//!
//! # fn main() -> anyhow::Result<()> {
//! let ner_config = TokenClassificationConfig {
//!     model_type: ModelType::XLMRoberta,
//!     model_resource: Resource::Remote(RemoteResource::from_pretrained(
//!         RobertaModelResources::XLM_ROBERTA_NER_DE,
//!     )),
//!     config_resource: Resource::Remote(RemoteResource::from_pretrained(
//!         RobertaConfigResources::XLM_ROBERTA_NER_DE,
//!     )),
//!     vocab_resource: Resource::Remote(RemoteResource::from_pretrained(
//!         RobertaVocabResources::XLM_ROBERTA_NER_DE,
//!     )),
//!     lower_case: false,
//!     device: Device::cuda_if_available(),
//!     ..Default::default()
//! };
//!
//! let ner_model = NERModel::new(ner_config)?;
//!
//! //    Define input
//! let input = [
//!     "Mein Name ist Amélie. Ich lebe in Paris.",
//!     "Paris ist eine Stadt in Frankreich.",
//! ];
//! let output = ner_model.predict(&input);
//! # Ok(())
//! # }
//! ```
//! The XLMRoberta models for the languages are defined as follows:
//!
//! | **Language** |**Model name**|
//! :-----:|:----:
//! English| XLM_ROBERTA_NER_EN |
//! German| XLM_ROBERTA_NER_DE |
//! Spanish| XLM_ROBERTA_NER_ES |
//! Dutch| XLM_ROBERTA_NER_NL |

use crate::common::error::RustBertError;
use crate::pipelines::token_classification::{TokenClassificationConfig, TokenClassificationModel};

#[derive(Debug)]
/// # Entity generated by a `NERModel`
pub struct Entity {
    /// String representation of the Entity
    pub word: String,
    /// Confidence score
    pub score: f64,
    /// Entity label (e.g. ORG, LOC...)
    pub label: String,
}

//type alias for some backward compatibility
type NERConfig = TokenClassificationConfig;

/// # NERModel to extract named entities
pub struct NERModel {
    token_classification_model: TokenClassificationModel,
}

impl NERModel {
    /// Build a new `NERModel`
    ///
    /// # Arguments
    ///
    /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU)
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model = NERModel::new(Default::default())?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> {
        let model = TokenClassificationModel::new(ner_config)?;
        Ok(NERModel {
            token_classification_model: model,
        })
    }

    /// Extract entities from a text
    ///
    /// # Arguments
    ///
    /// * `input` - `&[&str]` Array of texts to extract entities from.
    ///
    /// # Returns
    ///
    /// * `Vec<Entity>` containing extracted entities
    ///
    /// # Example
    ///
    /// ```no_run
    /// # fn main() -> anyhow::Result<()> {
    /// # use rust_bert::pipelines::ner::NERModel;
    ///
    /// let ner_model = NERModel::new(Default::default())?;
    /// let input = [
    ///     "My name is Amy. I live in Paris.",
    ///     "Paris is a city in France.",
    /// ];
    /// let output = ner_model.predict(&input);
    /// # Ok(())
    /// # }
    /// ```
    pub fn predict<'a, S>(&self, input: S) -> Vec<Entity>
    where
        S: AsRef<[&'a str]>,
    {
        self.token_classification_model
            .predict(input, true, false)
            .into_iter()
            .filter(|token| token.label != "O")
            .map(|token| Entity {
                word: token.text,
                score: token.score,
                label: token.label,
            })
            .collect()
    }
}
#[cfg(test)]
mod test {
    use super::*;

    #[test]
    #[ignore] // no need to run, compilation is enough to verify it is Send
    fn test() {
        let config = NERConfig::default();
        let _: Box<dyn Send> = Box::new(NERModel::new(config));
    }
}