1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Named Entity Recognition pipeline //! Extracts entities (Person, Location, Organization, Miscellaneous) from text. //! Pretrained models are available for the following languages: //! - English //! - German //! - Spanish //! - Dutch //! //! The default NER mode is an English BERT cased large model finetuned on CoNNL03, contributed by the [MDZ Digital Library team at the Bavarian State Library](https://github.com/dbmdz) //! All resources for this model can be downloaded using the Python utility script included in this repository. //! 1. Set-up a Python virtual environment and install dependencies (in ./requirements.txt) //! 2. Run the conversion script python /utils/download-dependencies_bert_ner.py. //! The dependencies will be downloaded to the user's home directory, under ~/rustbert/bert-ner //! //! The example below illustrate how to run the model for the default English NER model //! ```no_run //! use rust_bert::pipelines::ner::NERModel; //! # fn main() -> anyhow::Result<()> { //! let ner_model = NERModel::new(Default::default())?; //! //! let input = [ //! "My name is Amy. I live in Paris.", //! "Paris is a city in France.", //! ]; //! let output = ner_model.predict(&input); //! # Ok(()) //! # } //! ``` //! Output: \ //! ```no_run //! # use rust_bert::pipelines::question_answering::Answer; //! # use rust_bert::pipelines::ner::Entity; //! # let output = //! [ //! Entity { //! word: String::from("Amy"), //! score: 0.9986, //! label: String::from("I-PER"), //! }, //! Entity { //! word: String::from("Paris"), //! score: 0.9985, //! label: String::from("I-LOC"), //! }, //! Entity { //! word: String::from("Paris"), //! score: 0.9988, //! label: String::from("I-LOC"), //! }, //! Entity { //! word: String::from("France"), //! score: 0.9993, //! label: String::from("I-LOC"), //! }, //! ] //! # ; //! ``` //! //! To run the pipeline for another language, change the NERModel configuration from its default: //! //! ```no_run //! use rust_bert::pipelines::common::ModelType; //! use rust_bert::pipelines::ner::NERModel; //! use rust_bert::pipelines::token_classification::TokenClassificationConfig; //! use rust_bert::resources::{RemoteResource, Resource}; //! use rust_bert::roberta::{ //! RobertaConfigResources, RobertaModelResources, RobertaVocabResources, //! }; //! use tch::Device; //! //! # fn main() -> anyhow::Result<()> { //! let ner_config = TokenClassificationConfig { //! model_type: ModelType::XLMRoberta, //! model_resource: Resource::Remote(RemoteResource::from_pretrained( //! RobertaModelResources::XLM_ROBERTA_NER_DE, //! )), //! config_resource: Resource::Remote(RemoteResource::from_pretrained( //! RobertaConfigResources::XLM_ROBERTA_NER_DE, //! )), //! vocab_resource: Resource::Remote(RemoteResource::from_pretrained( //! RobertaVocabResources::XLM_ROBERTA_NER_DE, //! )), //! lower_case: false, //! device: Device::cuda_if_available(), //! ..Default::default() //! }; //! //! let ner_model = NERModel::new(ner_config)?; //! //! // Define input //! let input = [ //! "Mein Name ist Amélie. Ich lebe in Paris.", //! "Paris ist eine Stadt in Frankreich.", //! ]; //! let output = ner_model.predict(&input); //! # Ok(()) //! # } //! ``` //! The XLMRoberta models for the languages are defined as follows: //! //! | **Language** |**Model name**| //! :-----:|:----: //! English| XLM_ROBERTA_NER_EN | //! German| XLM_ROBERTA_NER_DE | //! Spanish| XLM_ROBERTA_NER_ES | //! Dutch| XLM_ROBERTA_NER_NL | use crate::common::error::RustBertError; use crate::pipelines::token_classification::{TokenClassificationConfig, TokenClassificationModel}; #[derive(Debug)] /// # Entity generated by a `NERModel` pub struct Entity { /// String representation of the Entity pub word: String, /// Confidence score pub score: f64, /// Entity label (e.g. ORG, LOC...) pub label: String, } //type alias for some backward compatibility type NERConfig = TokenClassificationConfig; /// # NERModel to extract named entities pub struct NERModel { token_classification_model: TokenClassificationModel, } impl NERModel { /// Build a new `NERModel` /// /// # Arguments /// /// * `ner_config` - `NERConfig` object containing the resource references (model, vocabulary, configuration) and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new(ner_config: NERConfig) -> Result<NERModel, RustBertError> { let model = TokenClassificationModel::new(ner_config)?; Ok(NERModel { token_classification_model: model, }) } /// Extract entities from a text /// /// # Arguments /// /// * `input` - `&[&str]` Array of texts to extract entities from. /// /// # Returns /// /// * `Vec<Entity>` containing extracted entities /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// # use rust_bert::pipelines::ner::NERModel; /// /// let ner_model = NERModel::new(Default::default())?; /// let input = [ /// "My name is Amy. I live in Paris.", /// "Paris is a city in France.", /// ]; /// let output = ner_model.predict(&input); /// # Ok(()) /// # } /// ``` pub fn predict<'a, S>(&self, input: S) -> Vec<Entity> where S: AsRef<[&'a str]>, { self.token_classification_model .predict(input, true, false) .into_iter() .filter(|token| token.label != "O") .map(|token| Entity { word: token.text, score: token.score, label: token.label, }) .collect() } } #[cfg(test)] mod test { use super::*; #[test] #[ignore] // no need to run, compilation is enough to verify it is Send fn test() { let config = NERConfig::default(); let _: Box<dyn Send> = Box::new(NERModel::new(config)); } }