1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
// Copyright 2019-present Microsoft // Copyright 2020-present, the HuggingFace Inc. team. // Copyright 2020 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. //! # Multi-turn dialogue //! Conversation model based on Microsoft's [DialoGPT](https://github.com/microsoft/DialoGPT). //! This pipeline allows the generation of single or multi-turn conversations between a human and a model. //! The DialoGPT's page states that //! > The human evaluation results indicate that the response generated from DialoGPT is comparable to human response quality //! > under a single-turn conversation Turing test. ([DialoGPT repository](https://github.com/microsoft/DialoGPT)) //! //! //! The dependencies will be downloaded to the user's home directory, under ~/.cache/.rustbert/dialgpt-medium //! //! ```no_run //! # fn main() -> anyhow::Result<()> { //! use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel}; //! let conversation_model = ConversationModel::new(Default::default())?; //! let mut conversation_manager = ConversationManager::new(); //! //! let conversation_id = //! conversation_manager.create("Going to the movies tonight - any suggestions?"); //! let output = conversation_model.generate_responses(&mut conversation_manager); //! # Ok(()) //! # } //! ``` //! //! Example output: \ //! ```no_run //! # let output = //! "The Big Lebowski." //! # ; //! ``` //! //! # Disclaimer //! The authors of this repository are not responsible for any generation //! from the 3rd party utilization of the pretrained system. use crate::common::error::RustBertError; use crate::common::resources::{RemoteResource, Resource}; use crate::gpt2::{ GPT2Generator, Gpt2ConfigResources, Gpt2MergesResources, Gpt2ModelResources, Gpt2VocabResources, }; use crate::pipelines::common::{ModelType, TokenizerOption}; use crate::pipelines::generation_utils::private_generation_utils::PrivateLanguageGenerator; use crate::pipelines::generation_utils::{GenerateConfig, LanguageGenerator}; use itertools::Itertools; use std::collections::HashMap; use tch::{Device, Kind, Tensor}; use uuid::Uuid; /// # Configuration for multi-turn classification /// Contains information regarding the model to load, mirrors the GenerationConfig, with a /// different set of default parameters and sets the device to place the model on. pub struct ConversationConfig { /// Model type pub model_type: ModelType, /// Model weights resource (default: DialoGPT-medium) pub model_resource: Resource, /// Config resource (default: DialoGPT-medium) pub config_resource: Resource, /// Vocab resource (default: DialoGPT-medium) pub vocab_resource: Resource, /// Merges resource (default: DialoGPT-medium) pub merges_resource: Resource, /// Minimum sequence length (default: 0) pub min_length: i64, /// Maximum sequence length (default: 20) pub max_length: i64, /// Minimum free length available for generated responses (default: 32) pub min_length_for_response: i64, /// Sampling flag. If true, will perform top-k and/or nucleus sampling on generated tokens, otherwise greedy (deterministic) decoding (default: true) pub do_sample: bool, /// Early stopping flag indicating if the beam search should stop as soon as `num_beam` hypotheses have been generated (default: false) pub early_stopping: bool, /// Number of beams for beam search (default: 5) pub num_beams: i64, /// Temperature setting. Values higher than 1 will improve originality at the risk of reducing relevance (default: 1.0) pub temperature: f64, /// Top_k values for sampling tokens. Value higher than 0 will enable the feature (default: 0) pub top_k: i64, /// Top_p value for [Nucleus sampling, Holtzman et al.](http://arxiv.org/abs/1904.09751). Keep top tokens until cumulative probability reaches top_p (default: 0.9) pub top_p: f64, /// Repetition penalty (mostly useful for CTRL decoders). Values higher than 1 will penalize tokens that have been already generated. (default: 1.0) pub repetition_penalty: f64, /// Exponential penalty based on the length of the hypotheses generated (default: 1.0) pub length_penalty: f64, /// Number of allowed repetitions of n-grams. Values higher than 0 turn on this feature (default: 3) pub no_repeat_ngram_size: i64, /// Number of sequences to return for each prompt text (default: 1) pub num_return_sequences: i64, /// Number of beam groups for diverse beam generation. If provided and higher than 1, will split the beams into beam subgroups leading to more diverse generation. pub num_beam_groups: Option<i64>, /// Diversity penalty for diverse beam search. High values will enforce more difference between beam groups (default: 5.5) pub diversity_penalty: Option<f64>, /// Device to place the model on (default: CUDA/GPU when available) pub device: Device, } impl Default for ConversationConfig { fn default() -> ConversationConfig { ConversationConfig { model_type: ModelType::GPT2, model_resource: Resource::Remote(RemoteResource::from_pretrained( Gpt2ModelResources::DIALOGPT_MEDIUM, )), config_resource: Resource::Remote(RemoteResource::from_pretrained( Gpt2ConfigResources::DIALOGPT_MEDIUM, )), vocab_resource: Resource::Remote(RemoteResource::from_pretrained( Gpt2VocabResources::DIALOGPT_MEDIUM, )), merges_resource: Resource::Remote(RemoteResource::from_pretrained( Gpt2MergesResources::DIALOGPT_MEDIUM, )), min_length: 0, max_length: 1000, min_length_for_response: 32, do_sample: true, early_stopping: false, num_beams: 1, temperature: 1.0, top_k: 50, top_p: 0.9, repetition_penalty: 1.0, length_penalty: 1.0, no_repeat_ngram_size: 0, num_return_sequences: 1, num_beam_groups: None, diversity_penalty: None, device: Device::cuda_if_available(), } } } impl From<ConversationConfig> for GenerateConfig { fn from(config: ConversationConfig) -> GenerateConfig { GenerateConfig { model_resource: config.model_resource, config_resource: config.config_resource, merges_resource: config.merges_resource, vocab_resource: config.vocab_resource, min_length: config.min_length, max_length: config.max_length, do_sample: config.do_sample, early_stopping: config.early_stopping, num_beams: config.num_beams, temperature: config.temperature, top_k: config.top_k, top_p: config.top_p, repetition_penalty: config.repetition_penalty, length_penalty: config.length_penalty, no_repeat_ngram_size: config.no_repeat_ngram_size, num_return_sequences: config.num_return_sequences, num_beam_groups: config.num_beam_groups, diversity_penalty: config.diversity_penalty, device: config.device, } } } #[derive(Debug, Clone)] /// Data structure keeping track of a conversation in the system. It contains past user inputs and /// generated answers, a history of the tokens generated and a placeholder for new user inputs to be /// processed by the system if submitted for prediction pub struct Conversation { /// Past user inputs that have already been processed pub past_user_inputs: Vec<String>, /// Past system generated responses pub generated_responses: Vec<String>, /// New user input that needs to be processed pub new_user_input: Option<String>, /// History of the tokens passed as an input and generated so far used as context for next turn generation pub history: Vec<Vec<i64>>, } impl Conversation { /// Build a new `Conversation` with an initial user input /// /// # Arguments /// /// * `text` - `String` with the initial user input to start a conversation /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let conversation = Conversation::new("Hi there!"); /// ``` pub fn new(text: &str) -> Conversation { Conversation { past_user_inputs: vec![], generated_responses: vec![], new_user_input: Some(text.to_string()), history: vec![], } } /// Build a new `Conversation` placeholder without user input /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let conversation = Conversation::new_empty(); /// ``` pub fn new_empty() -> Conversation { Conversation { past_user_inputs: vec![], generated_responses: vec![], new_user_input: None, history: vec![], } } /// Adds a new user input to the conversation. This method returns an error if an unprocessed /// user input already exists /// /// # Arguments /// /// * `text` - `&str` with the additional user input to continue a conversation /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let mut conversation = Conversation::new_empty(); /// conversation.add_user_input("Hi there!"); /// ``` pub fn add_user_input(&mut self, text: &str) -> Result<(), RustBertError> { if self.new_user_input.is_some() { Err(RustBertError::ValueError( "User input already provided for this conversation".into(), )) } else { self.new_user_input = Some(text.to_string()); Ok(()) } } /// Adds a new user input to the conversation. If an unprocessed user input already exists, /// its contents are overwritten by the new value provided. /// /// # Arguments /// /// * `text` - `&str` with the additional user input to continue a conversation /// /// # Returns /// /// * `Option<String>` containing overwritten string if applicable /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let mut conversation = Conversation::new_empty(); /// conversation.add_user_input("This input will not be used"); /// let unused_string = conversation.add_user_input_with_overwrite("Hi there!"); /// ``` pub fn add_user_input_with_overwrite(&mut self, text: &str) -> Option<String> { let old_user_input = if self.new_user_input.is_some() { self.new_user_input.clone() } else { None }; self.new_user_input = Some(text.to_string()); old_user_input } /// Returns `true` if the conversation contains new user inputs to process /// /// # Returns /// /// * `bool` flag indicating if the conversation contains new inputs to process /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let mut conversation = Conversation::new_empty(); /// let false_value = conversation.contains_new_input(); /// conversation.add_user_input("This input will not be used"); /// let true_value = conversation.contains_new_input(); /// ``` pub fn contains_new_input(&self) -> bool { self.new_user_input.is_some() } /// Marks the conversation as processed and moves the user input that was up for /// processing to the past user inputs. /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let mut conversation = Conversation::new_empty(); /// let false_value = conversation.contains_new_input(); /// conversation.add_user_input("This input will not be used"); /// let true_value = conversation.contains_new_input(); /// conversation.mark_processed(); /// let false_value = conversation.contains_new_input(); /// assert_eq!(conversation.past_user_inputs.len(), 1usize); /// ``` pub fn mark_processed(&mut self) { if self.new_user_input.is_some() { self.past_user_inputs .push(self.new_user_input.clone().unwrap()); self.new_user_input = None; } } /// Returns the last user input provided (including non-processed inputs). /// /// # Returns /// /// * `Option<&str>` representation of the last user input provided /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let mut conversation = Conversation::new_empty(); /// let none_value = conversation.get_last_input(); /// conversation.add_user_input("This input will not be used"); /// let last_provided_input = conversation.get_last_input(); /// assert_eq!(last_provided_input, Some("This input will not be used")); /// ``` pub fn get_last_input(&self) -> Option<&str> { if self.new_user_input.is_some() { Some(self.new_user_input.as_ref().unwrap().as_str()) } else if !self.past_user_inputs.is_empty() { Some(self.past_user_inputs.last().unwrap().as_str()) } else { None } } /// Returns the last response generated by the system. /// /// # Returns /// /// * `Option<&str>` representation of the last response generated by the system. /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::Conversation; /// /// let mut conversation = Conversation::new("Hi There"); /// let non_value = conversation.get_last_response(); /// ``` pub fn get_last_response(&self) -> Option<&str> { if !self.generated_responses.is_empty() { Some(self.generated_responses.last().unwrap().as_str()) } else { None } } fn append(&mut self, text: &str, ids: &[i64]) { match &self.new_user_input { Some(_) => { self.mark_processed(); if self.past_user_inputs.len() >= self.generated_responses.len() { self.generated_responses.push(text.to_string()); } else { let _ = self.add_user_input(text); } } None => { let _ = self.add_user_input(text); } } self.history.push(ids.to_vec()); } /// Initializes a conversation form a prior state. It is assumed that a conversation always /// start from a user interaction. /// /// # Arguments /// - texts: sequence of strings, alternating between past user inputs and past generated responses. /// - ids: sequence of sequence of ids, alternating between past user inputs and past generated responses. /// These can be generated via a `ConversationModel`'s `encode_prompts`. /// /// # Example: /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel}; /// use rust_bert::pipelines::generation_utils::LanguageGenerator; /// let model = ConversationModel::new(Default::default())?; /// /// let mut conversation_manager = ConversationManager::new(); /// let history = [ /// "Going to the movies tonight - any suggestions?", /// "The Big Lebowski", /// "Is it an action movie?", /// ]; /// let encoded_history = model.encode_prompts(&history); /// /// let conversation_1_id = conversation_manager.create_empty(); /// let _ = conversation_manager /// .get(&conversation_1_id) /// .unwrap() /// .load_from_history(history, encoded_history); /// # Ok(()) /// # } /// ``` pub fn load_from_history<ST, SI, STR, SIN>(&mut self, texts: ST, ids: SI) where ST: AsRef<[STR]>, SI: AsRef<[SIN]>, STR: AsRef<str>, SIN: AsRef<[i64]>, { for (round_text, round_ids) in texts.as_ref().iter().zip(ids.as_ref().iter()) { self.append(round_text.as_ref(), round_ids.as_ref()); } if texts.as_ref().len() / 2 == 1 { self.history.pop(); } } } /// Data structure allowing the management of conversations and main input to the dialogue model. /// It contains a `HashMap` of conversations with `UUID` keys #[derive(Debug)] pub struct ConversationManager { conversations: HashMap<Uuid, Conversation>, } impl ConversationManager { /// Build a new `ConversationManager` /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::ConversationManager; /// /// let conversation_manager = ConversationManager::new(); /// ``` pub fn new() -> ConversationManager { ConversationManager { conversations: HashMap::new(), } } /// Returns a list of the active conversations (containing new inputs to be processed by the model) /// /// # Returns /// /// * `(Vec<&Uuid>, Vec<&mut Conversation>)` Tuple of vectors with the active `UUID` and `Conversations` /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation = Conversation::new("Hi there!"); /// let empty_conversation = Conversation::new_empty(); /// let conversation_id = conversation_manager.add(conversation); /// let empty_conversation_id = conversation_manager.add(empty_conversation); /// /// let active_conversations = conversation_manager.get_active_conversations(); /// assert_eq!(active_conversations.0.len(), 1usize); /// ``` pub fn get_active_conversations(&mut self) -> (Vec<&Uuid>, Vec<&mut Conversation>) { let mut active_uuid = vec![]; let mut active_conversations = vec![]; for (uuid, conversation) in self.conversations.iter_mut() { if conversation.new_user_input.is_some() { active_uuid.push(uuid); active_conversations.push(conversation) } } (active_uuid, active_conversations) } /// Returns a mutable reference to the conversation wih the provided UUID /// /// # Arguments /// /// * `uuid` - `&Uuid` of the conversation to retrieve /// /// # Returns /// /// * `Option<&mut Conversation>` Optional mutable reference to the conversation matching the UUID provided /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation = Conversation::new("Hi there!"); /// let conversation_id = conversation_manager.add(conversation); /// /// let conversation_ref = conversation_manager.get(&conversation_id); /// ``` pub fn get(&mut self, uuid: &Uuid) -> Option<&mut Conversation> { self.conversations.get_mut(uuid) } /// Returns a HashMap containing references to all conversations stored in the manager /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation = Conversation::new("Hi there!"); /// let conversation_id = conversation_manager.add(conversation); /// /// let all_conversations = conversation_manager.get_all(); /// ``` pub fn get_all(&mut self) -> HashMap<&Uuid, &Conversation> { let mut output = HashMap::with_capacity(self.conversations.len()); for (uuid, conversation) in self.conversations.iter() { output.insert(uuid, conversation); } output } /// Creates a conversation and add it to the conversation manager /// /// # Arguments /// /// * `text` - `&str` string slice with an original user input /// /// # Returns /// /// * `Uuid` for the conversation created /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation_id = conversation_manager.create("Hi there!"); /// ``` pub fn create(&mut self, text: &str) -> Uuid { let conversation = Conversation::new(text); self.add(conversation) } /// Creates an empty conversation and add it to the conversation manager /// /// # Returns /// /// * `Uuid` for the conversation created /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation_id = conversation_manager.create_empty(); /// ``` pub fn create_empty(&mut self) -> Uuid { let conversation = Conversation::new_empty(); self.add(conversation) } /// Adds an existing conversation to the conversation manager /// /// # Arguments /// /// * `conversation` - `Conversation` to be added to the conversation manager /// /// # Returns /// /// * `Uuid` for the conversation created /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation = Conversation::new("Hi there!"); /// let conversation_id = conversation_manager.add(conversation); /// ``` pub fn add(&mut self, conversation: Conversation) -> Uuid { let mut uuid = Uuid::new_v4(); while self.conversations.contains_key(&uuid) { uuid = Uuid::new_v4(); } self.conversations.insert(uuid, conversation); uuid } /// Deregister a conversation from the conversation manager /// /// # Arguments /// /// * `uuid` - `&Uuid` of the conversation to deregister from the conversation manager /// /// # Returns /// /// * `Option<Conversation>` deregistered conversation /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation_id = conversation_manager.create("Hi there!"); /// conversation_manager.remove(&conversation_id); /// ``` pub fn remove(&mut self, uuid: &Uuid) -> Option<Conversation> { self.conversations.remove(uuid) } /// Clear all conversations from the conversation manager, and returns the conversations and their /// former UUID. /// /// # Returns /// /// * `HashMap<Uuid, Conversation>` deregistered conversations /// /// # Example /// /// ```no_run /// use rust_bert::pipelines::conversation::{Conversation, ConversationManager}; /// /// let mut conversation_manager = ConversationManager::new(); /// /// let conversation_id = conversation_manager.create("Hi there!"); /// let conversations = conversation_manager.clear(); /// ``` pub fn clear(&mut self) -> HashMap<Uuid, Conversation> { let mut output = HashMap::with_capacity(self.conversations.len()); for (uuid, conversation) in self.conversations.iter() { output.insert(*uuid, conversation.clone()); } self.conversations = HashMap::new(); output } } impl Default for ConversationManager { fn default() -> Self { Self::new() } } /// # Abstraction that holds one particular conversation model, for any of the supported models pub enum ConversationOption { /// Conversation based on GPT2 model GPT2(GPT2Generator), } impl ConversationOption { pub fn new(config: ConversationConfig) -> Result<Self, RustBertError> { match config.model_type { ModelType::GPT2 => Ok(ConversationOption::GPT2(GPT2Generator::new(config.into())?)), _ => Err(RustBertError::InvalidConfigurationError( "GPT2 is currently the only supported model for conversation generation" .to_string(), )), } } pub fn get_eos_id(&self) -> Result<i64, RustBertError> { match self { Self::GPT2(model_ref) => { Ok(*model_ref.get_eos_ids().as_ref().unwrap().first().unwrap()) } } } pub fn get_tokenizer(&self) -> &TokenizerOption { match self { Self::GPT2(model_ref) => model_ref.get_tokenizer(), } } /// Returns the `ModelType` for this ConversationOption pub fn model_type(&self) -> ModelType { match *self { Self::GPT2(_) => ModelType::GPT2, } } /// Interface method to generate_from_ids_and_past() of the particular models. pub fn generate_from_ids_and_past( &self, input_ids: Tensor, attention_mask: Option<Tensor>, ) -> Vec<Vec<i64>> { match *self { Self::GPT2(ref model) => { model.generate_from_ids_and_past(input_ids, attention_mask, None, None, None) } } } } /// # Conversation model /// Processes a ConversationManager and generate system responses for active conversations. pub struct ConversationModel { model: ConversationOption, eos_token_id: i64, max_allowed_context_length: i64, device: Device, } impl ConversationModel { /// Build a new `ConversationModel` /// /// # Arguments /// /// * `conversation_config` - `ConversationConfig` object containing the resource references (model, vocabulary, configuration), conversation options and device placement (CPU/GPU) /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::conversation::ConversationModel; /// /// let conversation_model = ConversationModel::new(Default::default())?; /// # Ok(()) /// # } /// ``` pub fn new( conversation_config: ConversationConfig, ) -> Result<ConversationModel, RustBertError> { let max_allowed_length = conversation_config.max_length - conversation_config.min_length_for_response; let device = conversation_config.device; let model = ConversationOption::new(conversation_config)?; let eos_token_id = model.get_eos_id()?; Ok(ConversationModel { model, eos_token_id, max_allowed_context_length: max_allowed_length, device, }) } /// Perform a multi-turn conversation based on user input /// /// # Arguments /// /// * `conversation_manager` - `&mut ConversationManager` Conversation manager keeping track of active conversations /// /// # Returns /// * `HashMap<&Uuid, &str>` Responses from the model for each active conversation, referenced by Uuid /// /// # Example /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel}; /// use rust_bert::pipelines::generation_utils::LanguageGenerator; /// let model = ConversationModel::new(Default::default())?; /// /// let mut conversation_manager = ConversationManager::new(); /// conversation_manager.create("Hello, how are you?"); /// /// let output = model.generate_responses(&mut conversation_manager); /// # Ok(()) /// # } /// ``` pub fn generate_responses<'a>( &self, conversation_manager: &'a mut ConversationManager, ) -> HashMap<&'a Uuid, &'a str> { let (active_uuid, active_conversations) = conversation_manager.get_active_conversations(); if !active_uuid.is_empty() { let texts = active_conversations .iter() .map(|c| c.new_user_input.as_ref().unwrap().as_str()) .collect_vec(); let history = active_conversations .iter() .map(|c| c.history.iter().flatten().copied().collect()) .collect_vec(); let prompt_ids = self.encode_prompts(texts.as_ref()); let (input_tensor, attention_mask) = self.concat_input_history(prompt_ids.as_ref(), history); let input_length = *input_tensor.size().last().unwrap() as usize; let mut generated = self .model .generate_from_ids_and_past(input_tensor, Some(attention_mask)); let removed_padding_quantities = self.clean_padding_indices(&mut generated); let mut output = HashMap::with_capacity(active_uuid.len()); for ( ((conversation, (generated_sequence, conversation_promp_ids)), uuid), removed_padding, ) in active_conversations .into_iter() .zip(generated.into_iter().zip(prompt_ids.into_iter())) .zip(active_uuid.into_iter()) .zip(removed_padding_quantities.into_iter()) { let generated_response = &generated_sequence[input_length - removed_padding.0..]; conversation .generated_responses .push(self.model.get_tokenizer().decode( generated_response.to_vec(), true, true, )); conversation.history.push(conversation_promp_ids); conversation.history.push(generated_response.to_vec()); conversation.mark_processed(); output.insert(uuid, conversation.get_last_response().unwrap()); } output } else { HashMap::new() } } fn clean_padding_indices(&self, model_output: &mut Vec<Vec<i64>>) -> Vec<(usize, usize)> { // In case inputs are sent as batch, this cleans the padding indices in the history for shorter outputs let pad_token = self .model .get_tokenizer() .get_pad_id() .unwrap_or(self.eos_token_id); let mut removed_tokens = Vec::with_capacity(model_output.len()); for sequence_history in model_output { let index_end = sequence_history .iter() .rev() .position(|&r| r != pad_token) .unwrap(); let index_start = sequence_history .iter() .position(|&r| r != pad_token) .unwrap(); if index_end > 0 { sequence_history.drain(sequence_history.len() - index_end + 1..); } sequence_history.drain(..index_start); removed_tokens.push((index_start, index_end)); } removed_tokens } fn concat_input_history( &self, inputs: &[Vec<i64>], history: Vec<Vec<i64>>, ) -> (Tensor, Tensor) { // Concatenates the history token indices with new user input let pad_token = self .model .get_tokenizer() .get_pad_id() .unwrap_or(self.eos_token_id); assert_eq!( inputs.len(), history.len(), "Length of inputs should equal length of history" ); let mut concatenated_inputs = Vec::with_capacity(inputs.len()); for (input, history) in inputs.iter().zip(history.iter()) { let mut concatenated_element = Vec::with_capacity(input.len() + history.len()); concatenated_element.extend_from_slice(history); concatenated_element.extend_from_slice(input); concatenated_inputs.push(concatenated_element); } let max_len = concatenated_inputs .iter() .map(|input| input.len()) .max() .unwrap() .min(self.max_allowed_context_length as usize); let truncated_concatenated_inputs = concatenated_inputs .iter() .map(|input| { if input.len() > max_len { let start = self.get_truncated_input_index(&input, max_len, pad_token); &input[start..] } else { input.as_slice() } }) .collect::<Vec<&[i64]>>(); let max_len = truncated_concatenated_inputs .iter() .map(|input| input.len()) .max() .unwrap(); let attention_mask = Tensor::ones( &[inputs.len() as i64, max_len as i64], (Kind::Int8, self.device), ); let concatenated_inputs = truncated_concatenated_inputs .into_iter() .enumerate() .map(|(input_idx, input)| { let _ = attention_mask .get(input_idx as i64) .slice(0, 0, (max_len - input.len()) as i64, 1) .fill_(0); let mut padded_input = vec![pad_token; max_len - input.len()]; padded_input.extend(input); padded_input }) .map(|tokens| Tensor::of_slice(&tokens).to(self.device)) .collect::<Vec<Tensor>>(); (Tensor::stack(&concatenated_inputs, 0), attention_mask) } fn get_truncated_input_index( &self, history: &[i64], max_length: usize, pad_token: i64, ) -> usize { let start_length = history.len(); let eos_indices: Vec<usize> = history .iter() .enumerate() .filter(|(i, &e)| { (e == pad_token) & (*i != start_length - 1) & ((start_length as isize - max_length as isize - *i as isize) < 0) }) .map(|(i, _)| i + 1) .collect(); *eos_indices.first().unwrap_or(&0usize) } /// Encodes prompts into Vectors of indices to be processed by the model. This method may be used to /// initialize the history of a conversation with a prior state. /// /// # Example: /// /// ```no_run /// # fn main() -> anyhow::Result<()> { /// use rust_bert::pipelines::conversation::{ConversationManager, ConversationModel}; /// use rust_bert::pipelines::generation_utils::LanguageGenerator; /// let model = ConversationModel::new(Default::default())?; /// let history = [ /// "Going to the movies tonight - any suggestions?", /// "The Big Lebowski", /// "Is it an action movie?", /// ]; /// let encoded_history = model.encode_prompts(&history); /// # Ok(()) /// # } /// ``` pub fn encode_prompts(&self, texts: &[&str]) -> Vec<Vec<i64>> { // Encode the user prompt into token ids let tokens = self.model.get_tokenizer().tokenize_list(texts); tokens .into_iter() .map(|prompt_tokens| { self.model .get_tokenizer() .convert_tokens_to_ids(&prompt_tokens) }) .map(|mut tokens| { tokens.push(self.eos_token_id); tokens }) .collect::<Vec<Vec<i64>>>() } } #[cfg(test)] mod test { use super::*; #[test] #[ignore] // no need to run, compilation is enough to verify it is Send fn test() { let config = ConversationConfig::default(); let _: Box<dyn Send> = Box::new(ConversationModel::new(config)); } }