1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
//! # GPT2 (Radford et al.) //! //! Implementation of the GPT2 language model ([Language Models are Unsupervised Multitask Learners](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) Radford, Wu, Child, Luan, Amodei, Sutskever 2019). //! The base model is implemented in the `gpt2_model::Gpt2Model` struct. The model also includes a language model head: `gpt2_model::GPT2LMHeadModel` //! implementing the common `generation_utils::LMHeadModel` trait shared between the models used for generation (see `pipelines` for more information). //! //! # Model set-up and pre-trained weights loading //! //! A full working example is provided in `examples/generation.rs`, run with `cargo run --example generation`. //! All models expect the following resources: //! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers) //! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format. //! - `Gpt2Tokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges //! Pretrained models are available and can be downloaded using RemoteResources. //! //! ```no_run //! # fn main() -> anyhow::Result<()> { //! # //! use tch::{nn, Device}; //! # use std::path::PathBuf; //! use rust_bert::gpt2::{GPT2LMHeadModel, Gpt2Config}; //! use rust_bert::resources::{LocalResource, Resource}; //! use rust_bert::Config; //! use rust_tokenizers::tokenizer::Gpt2Tokenizer; //! //! let config_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/config.json"), //! }); //! let vocab_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let merges_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let weights_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/model.ot"), //! }); //! let config_path = config_resource.get_local_path()?; //! let vocab_path = vocab_resource.get_local_path()?; //! let merges_path = merges_resource.get_local_path()?; //! let weights_path = weights_resource.get_local_path()?; //! //! let device = Device::cuda_if_available(); //! let mut vs = nn::VarStore::new(device); //! let tokenizer: Gpt2Tokenizer = Gpt2Tokenizer::from_file( //! vocab_path.to_str().unwrap(), //! merges_path.to_str().unwrap(), //! true, //! )?; //! let config = Gpt2Config::from_file(config_path); //! let gpt2_model = GPT2LMHeadModel::new(&vs.root(), &config); //! vs.load(weights_path)?; //! //! # Ok(()) //! # } //! ``` pub(crate) mod attention; mod gpt2_model; pub(crate) mod transformer; pub use gpt2_model::{ GPT2Generator, GPT2LMHeadModel, Gpt2Config, Gpt2ConfigResources, Gpt2MergesResources, Gpt2Model, Gpt2ModelOutput, Gpt2ModelResources, Gpt2VocabResources, };