1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
// Copyright 2019-present, the HuggingFace Inc. team, The Google AI Language Team and Facebook, Inc. // Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. // Copyright 2019 Guillaume Becquin // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. use crate::bert::attention::{BertAttention, BertIntermediate, BertOutput}; use crate::bert::bert_model::BertConfig; use std::borrow::{Borrow, BorrowMut}; use tch::{nn, Tensor}; /// # BERT Layer /// Layer used in BERT encoders. /// It is made of the following blocks: /// - `attention`: self-attention `BertAttention` layer /// - `cross_attention`: (optional) cross-attention `BertAttention` layer (if the model is used as a decoder) /// - `is_decoder`: flag indicating if the model is used as a decoder /// - `intermediate`: `BertIntermediate` intermediate layer /// - `output`: `BertOutput` output layer pub struct BertLayer { attention: BertAttention, is_decoder: bool, cross_attention: Option<BertAttention>, intermediate: BertIntermediate, output: BertOutput, } impl BertLayer { /// Build a new `BertLayer` /// /// # Arguments /// /// * `p` - Variable store path for the root of the BERT model /// * `config` - `BertConfig` object defining the model architecture /// /// # Example /// /// ```no_run /// use rust_bert::bert::{BertConfig, BertLayer}; /// use rust_bert::Config; /// use std::path::Path; /// use tch::{nn, Device}; /// /// let config_path = Path::new("path/to/config.json"); /// let device = Device::Cpu; /// let p = nn::VarStore::new(device); /// let config = BertConfig::from_file(config_path); /// let layer: BertLayer = BertLayer::new(&p.root(), &config); /// ``` pub fn new<'p, P>(p: P, config: &BertConfig) -> BertLayer where P: Borrow<nn::Path<'p>>, { let p = p.borrow(); let attention = BertAttention::new(p / "attention", &config); let (is_decoder, cross_attention) = match config.is_decoder { Some(value) => { if value { ( value, Some(BertAttention::new(p / "cross_attention", &config)), ) } else { (value, None) } } None => (false, None), }; let intermediate = BertIntermediate::new(p / "intermediate", &config); let output = BertOutput::new(p / "output", &config); BertLayer { attention, is_decoder, cross_attention, intermediate, output, } } /// Forward pass through the layer /// /// # Arguments /// /// * `hidden_states` - input tensor of shape (*batch size*, *sequence_length*, *hidden_size*). /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1 /// * `encoder_hidden_states` - Optional encoder hidden state of shape (*batch size*, *encoder_sequence_length*, *hidden_size*). If the model is defined as a decoder and the `encoder_hidden_states` is not None, used in the cross-attention layer as keys and values (query from the decoder). /// * `encoder_mask` - Optional encoder attention mask of shape (*batch size*, *encoder_sequence_length*). If the model is defined as a decoder and the `encoder_hidden_states` is not None, used to mask encoder values. Positions with value 0 will be masked. /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference. /// /// # Returns /// /// * `BertLayerOutput` containing: /// - `hidden_state` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*) /// - `attention_scores` - `Option<Tensor>` of shape (*batch size*, *sequence_length*, *hidden_size*) /// - `cross_attention_scores` - `Option<Tensor>` of shape (*batch size*, *sequence_length*, *hidden_size*) /// /// # Example /// /// ```no_run /// # use rust_bert::bert::{BertConfig, BertLayer}; /// # use tch::{nn, Device, Tensor, no_grad}; /// # use rust_bert::Config; /// # use std::path::Path; /// # use tch::kind::Kind::{Int64, Float}; /// # let config_path = Path::new("path/to/config.json"); /// # let device = Device::Cpu; /// # let vs = nn::VarStore::new(device); /// # let config = BertConfig::from_file(config_path); /// let layer: BertLayer = BertLayer::new(&vs.root(), &config); /// let (batch_size, sequence_length, hidden_size) = (64, 128, 512); /// let input_tensor = Tensor::rand(&[batch_size, sequence_length, hidden_size], (Float, device)); /// let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); /// /// let layer_output = no_grad(|| layer.forward_t(&input_tensor, &Some(mask), &None, &None, false)); /// ``` pub fn forward_t( &self, hidden_states: &Tensor, mask: &Option<Tensor>, encoder_hidden_states: &Option<Tensor>, encoder_mask: &Option<Tensor>, train: bool, ) -> BertLayerOutput { let (attention_output, attention_scores, cross_attention_scores) = if self.is_decoder & encoder_hidden_states.is_some() { let (attention_output, attention_weights) = self.attention .forward_t(hidden_states, mask, &None, &None, train); let (attention_output, cross_attention_weights) = self.cross_attention.as_ref().unwrap().forward_t( &attention_output, mask, encoder_hidden_states, encoder_mask, train, ); (attention_output, attention_weights, cross_attention_weights) } else { let (attention_output, attention_weights) = self.attention .forward_t(hidden_states, mask, &None, &None, train); (attention_output, attention_weights, None) }; let output = self.intermediate.forward(&attention_output); let output = self.output.forward_t(&output, &attention_output, train); BertLayerOutput { hidden_state: output, attention_weights: attention_scores, cross_attention_weights: cross_attention_scores, } } } /// # BERT Encoder /// Encoder used in BERT models. /// It is made of a Vector of `BertLayer` through which hidden states will be passed. The encoder can also be /// used as a decoder (with cross-attention) if `encoder_hidden_states` are provided. pub struct BertEncoder { output_attentions: bool, output_hidden_states: bool, layers: Vec<BertLayer>, } impl BertEncoder { /// Build a new `BertEncoder` /// /// # Arguments /// /// * `p` - Variable store path for the root of the BERT model /// * `config` - `BertConfig` object defining the model architecture /// /// # Example /// /// ```no_run /// use rust_bert::bert::{BertConfig, BertEncoder}; /// use rust_bert::Config; /// use std::path::Path; /// use tch::{nn, Device}; /// /// let config_path = Path::new("path/to/config.json"); /// let device = Device::Cpu; /// let p = nn::VarStore::new(device); /// let config = BertConfig::from_file(config_path); /// let encoder: BertEncoder = BertEncoder::new(&p.root(), &config); /// ``` pub fn new<'p, P>(p: P, config: &BertConfig) -> BertEncoder where P: Borrow<nn::Path<'p>>, { let p = p.borrow() / "layer"; let output_attentions = config.output_attentions.unwrap_or(false); let output_hidden_states = config.output_hidden_states.unwrap_or(false); let mut layers: Vec<BertLayer> = vec![]; for layer_index in 0..config.num_hidden_layers { layers.push(BertLayer::new(&p / layer_index, config)); } BertEncoder { output_attentions, output_hidden_states, layers, } } /// Forward pass through the encoder /// /// # Arguments /// /// * `hidden_states` - input tensor of shape (*batch size*, *sequence_length*, *hidden_size*). /// * `mask` - Optional mask of shape (*batch size*, *sequence_length*). Masked position have value 0, non-masked value 1. If None set to 1 /// * `encoder_hidden_states` - Optional encoder hidden state of shape (*batch size*, *encoder_sequence_length*, *hidden_size*). If the model is defined as a decoder and the `encoder_hidden_states` is not None, used in the cross-attention layer as keys and values (query from the decoder). /// * `encoder_mask` - Optional encoder attention mask of shape (*batch size*, *encoder_sequence_length*). If the model is defined as a decoder and the `encoder_hidden_states` is not None, used to mask encoder values. Positions with value 0 will be masked. /// * `train` - boolean flag to turn on/off the dropout layers in the model. Should be set to false for inference. /// /// # Returns /// /// * `BertEncoderOutput` containing: /// - `hidden_state` - `Tensor` of shape (*batch size*, *sequence_length*, *hidden_size*) /// - `all_hidden_states` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*) /// - `all_attentions` - `Option<Vec<Tensor>>` of length *num_hidden_layers* with shape (*batch size*, *sequence_length*, *hidden_size*) /// /// # Example /// /// ```no_run /// # use rust_bert::bert::{BertConfig, BertEncoder}; /// # use tch::{nn, Device, Tensor, no_grad}; /// # use rust_bert::Config; /// # use std::path::Path; /// # use tch::kind::Kind::{Int64, Float}; /// # let config_path = Path::new("path/to/config.json"); /// # let device = Device::Cpu; /// # let vs = nn::VarStore::new(device); /// # let config = BertConfig::from_file(config_path); /// let encoder: BertEncoder = BertEncoder::new(&vs.root(), &config); /// let (batch_size, sequence_length, hidden_size) = (64, 128, 512); /// let input_tensor = Tensor::rand(&[batch_size, sequence_length, hidden_size], (Float, device)); /// let mask = Tensor::zeros(&[batch_size, sequence_length], (Int64, device)); /// /// let encoder_output = /// no_grad(|| encoder.forward_t(&input_tensor, &Some(mask), &None, &None, false)); /// ``` pub fn forward_t( &self, hidden_states: &Tensor, mask: &Option<Tensor>, encoder_hidden_states: &Option<Tensor>, encoder_mask: &Option<Tensor>, train: bool, ) -> BertEncoderOutput { let mut all_hidden_states: Option<Vec<Tensor>> = if self.output_hidden_states { Some(vec![]) } else { None }; let mut all_attentions: Option<Vec<Tensor>> = if self.output_attentions { Some(vec![]) } else { None }; let mut hidden_state = hidden_states.copy(); let mut attention_weights: Option<Tensor>; for layer in &self.layers { if let Some(hidden_states) = all_hidden_states.borrow_mut() { hidden_states.push(hidden_state.as_ref().copy()); }; let layer_output = layer.forward_t( &hidden_state, &mask, encoder_hidden_states, encoder_mask, train, ); hidden_state = layer_output.hidden_state; attention_weights = layer_output.attention_weights; if let Some(attentions) = all_attentions.borrow_mut() { attentions.push(attention_weights.as_ref().unwrap().copy()); }; } BertEncoderOutput { hidden_state, all_hidden_states, all_attentions, } } } /// # BERT Pooler /// Pooler used in BERT models. /// It is made of a fully connected layer which is applied to the first sequence element. pub struct BertPooler { lin: nn::Linear, } impl BertPooler { /// Build a new `BertPooler` /// /// # Arguments /// /// * `p` - Variable store path for the root of the BERT model /// * `config` - `BertConfig` object defining the model architecture /// /// # Example /// /// ```no_run /// use rust_bert::bert::{BertConfig, BertPooler}; /// use rust_bert::Config; /// use std::path::Path; /// use tch::{nn, Device}; /// /// let config_path = Path::new("path/to/config.json"); /// let device = Device::Cpu; /// let p = nn::VarStore::new(device); /// let config = BertConfig::from_file(config_path); /// let pooler: BertPooler = BertPooler::new(&p.root(), &config); /// ``` pub fn new<'p, P>(p: P, config: &BertConfig) -> BertPooler where P: Borrow<nn::Path<'p>>, { let p = p.borrow(); let lin = nn::linear( p / "dense", config.hidden_size, config.hidden_size, Default::default(), ); BertPooler { lin } } /// Forward pass through the pooler /// /// # Arguments /// /// * `hidden_states` - input tensor of shape (*batch size*, *sequence_length*, *hidden_size*). /// /// # Returns /// /// * `Tensor` of shape (*batch size*, *hidden_size*) /// /// # Example /// /// ```no_run /// # use rust_bert::bert::{BertConfig, BertPooler}; /// # use tch::{nn, Device, Tensor, no_grad}; /// # use rust_bert::Config; /// # use std::path::Path; /// # use tch::kind::Kind::Float; /// # let config_path = Path::new("path/to/config.json"); /// # let device = Device::Cpu; /// # let vs = nn::VarStore::new(device); /// # let config = BertConfig::from_file(config_path); /// let pooler: BertPooler = BertPooler::new(&vs.root(), &config); /// let (batch_size, sequence_length, hidden_size) = (64, 128, 512); /// let input_tensor = Tensor::rand(&[batch_size, sequence_length, hidden_size], (Float, device)); /// /// let pooler_output = no_grad(|| pooler.forward(&input_tensor)); /// ``` pub fn forward(&self, hidden_states: &Tensor) -> Tensor { hidden_states.select(1, 0).apply(&self.lin).tanh() } } /// Container for the BERT layer output. pub struct BertLayerOutput { /// Hidden states pub hidden_state: Tensor, /// Self attention scores pub attention_weights: Option<Tensor>, /// Cross attention scores pub cross_attention_weights: Option<Tensor>, } /// Container for the BERT encoder output. pub struct BertEncoderOutput { /// Last hidden states from the model pub hidden_state: Tensor, /// Hidden states for all intermediate layers pub all_hidden_states: Option<Vec<Tensor>>, /// Attention weights for all intermediate layers pub all_attentions: Option<Vec<Tensor>>, }