1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
//! # BART (Lewis et al.) //! //! Implementation of the BART language model ([BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension](https://arxiv.org/abs/1910.13461) Lewis, Liu, Goyal, Ghazvininejad, Mohamed, Levy, Stoyanov, Zettlemoyer, 2019). //! The base model is implemented in the `bart::BartModel` struct. The model also includes a language model head: `bart::BartForConditionalGeneration` //! implementing the common `generation::LMHeadModel` trait shared between the models used for generation (see `pipelines` for more information). //! //! # Model set-up and pre-trained weights loading //! //! A full working example is provided in `examples/bart`, run with `cargo run --example bart`. //! Alternatively, the summarization capabilities are illustrated in `examples/summarization.rs`, run with `cargo run --example summarization`. //! All models expect the following resources: //! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers) //! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format. //! - `RobertaTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges //! Pretrained models are available and can be downloaded using RemoteResources. //! //! ```no_run //! # fn main() -> anyhow::Result<()> { //! # //! use tch::{nn, Device}; //! # use std::path::PathBuf; //! use rust_bert::bart::{BartConfig, BartModel}; //! use rust_bert::resources::{LocalResource, Resource}; //! use rust_bert::Config; //! use rust_tokenizers::tokenizer::RobertaTokenizer; //! //! let config_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/config.json"), //! }); //! let vocab_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let merges_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let weights_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/model.ot"), //! }); //! let config_path = config_resource.get_local_path()?; //! let vocab_path = vocab_resource.get_local_path()?; //! let merges_path = merges_resource.get_local_path()?; //! let weights_path = weights_resource.get_local_path()?; //! //! let device = Device::cuda_if_available(); //! let mut vs = nn::VarStore::new(device); //! let tokenizer: RobertaTokenizer = RobertaTokenizer::from_file( //! vocab_path.to_str().unwrap(), //! merges_path.to_str().unwrap(), //! true, //! false, //! )?; //! let config = BartConfig::from_file(config_path); //! let bart_model = BartModel::new(&vs.root(), &config, false); //! vs.load(weights_path)?; //! //! # Ok(()) //! # } //! ``` mod attention; mod bart_model; mod decoder; mod embeddings; mod encoder; pub use attention::LayerState; pub use bart_model::{ BartConfig, BartConfigResources, BartForConditionalGeneration, BartForSequenceClassification, BartMergesResources, BartModel, BartModelOutput, BartModelResources, BartVocabResources, }; pub(crate) use encoder::BartEncoderOutput;