1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
//! # GPT (Radford et al.) //! //! Implementation of the GPT2 language model ([Improving Language Understanding by Generative Pre-Training](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf) Radford, Narasimhan, Salimans, Sutskever 2018). //! The base model is implemented in the `openai_gpt::OpenAiGptModel` struct. The model also includes a language model head: `openai_gpt::OpenAIGPTLMHeadModel` //! implementing the common `generation::LMHeadModel` trait shared between the models used for generation (see `pipelines` for more information). //! //! # Model set-up and pre-trained weights loading //! //! A full working example is provided in `examples/openai_gpt`, run with `cargo run --example openai_gpt`. //! All models expect the following resources: //! - Configuration file expected to have a structure following the [Transformers library](https://github.com/huggingface/transformers) //! - Model weights are expected to have a structure and parameter names following the [Transformers library](https://github.com/huggingface/transformers). A conversion using the Python utility scripts is required to convert the `.bin` weights to the `.ot` format. //! - `GptTokenizer` using a `vocab.txt` vocabulary and `merges.txt` 2-gram merges //! Pretrained models are available and can be downloaded using RemoteResources. //! //! ```no_run //! # fn main() -> anyhow::Result<()> { //! use rust_tokenizers::OpenAiGptTokenizer; //! use tch::{nn, Device}; //! # use std::path::PathBuf; //! use rust_bert::gpt2::Gpt2Config; //! use rust_bert::openai_gpt::OpenAiGptModel; //! use rust_bert::resources::{LocalResource, Resource}; //! use rust_bert::Config; //! //! let config_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/config.json"), //! }); //! let vocab_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let merges_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/vocab.txt"), //! }); //! let weights_resource = Resource::Local(LocalResource { //! local_path: PathBuf::from("path/to/model.ot"), //! }); //! let config_path = config_resource.get_local_path()?; //! let vocab_path = vocab_resource.get_local_path()?; //! let merges_path = merges_resource.get_local_path()?; //! let weights_path = weights_resource.get_local_path()?; //! //! let device = Device::cuda_if_available(); //! let mut vs = nn::VarStore::new(device); //! let tokenizer: OpenAiGptTokenizer = OpenAiGptTokenizer::from_file( //! vocab_path.to_str().unwrap(), //! merges_path.to_str().unwrap(), //! true, //! )?; //! let config = Gpt2Config::from_file(config_path); //! let gpt_model = OpenAiGptModel::new(&vs.root(), &config); //! vs.load(weights_path)?; //! //! # Ok(()) //! # } //! ``` mod openai_gpt_model; mod transformer; pub use openai_gpt_model::{ OpenAIGPTLMHeadModel, OpenAiGptConfigResources, OpenAiGptMergesResources, OpenAiGptModel, OpenAiGptModelOutput, OpenAiGptModelResources, OpenAiGptVocabResources, };