rust_bert/pipelines/generation_utils.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
// Copyright 2018 The Google AI Language Team Authors, Facebook AI Research authors.
// Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
// Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
// Copyright 2019 Guillaume Becquin
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! # Natural Language Generation utilities
//! Set of text generation utilities, serving as a basis for TextGenerationModel, SummarizationModels and TranslationModels.
//! Include techniques such as beam search, top-k and nucleus sampling, temperature setting and repetition penalty.
//! Supports batch generation of sentences from several prompts. Sequences will be left-padded with the model's padding token if present, the unknown token otherwise.
//! This may impact the results and it is recommended to submit prompts of similar length for best results.
//!
//! ```no_run
//! # fn main() -> anyhow::Result<()> {
//! use rust_bert::gpt2::GPT2Generator;
//! use rust_bert::pipelines::generation_utils::{
//! GenerateConfig, GenerateOptions, LanguageGenerator,
//! };
//!
//! let generate_config = GenerateConfig {
//! do_sample: true,
//! num_beams: 5,
//! temperature: 1.1,
//! num_return_sequences: 3,
//! ..Default::default()
//! };
//! let mut gpt2_generator = GPT2Generator::new(generate_config)?;
//!
//! let input_context = "The dog";
//! let second_input_context = "The cat was";
//!
//! let generate_options = GenerateOptions {
//! min_length: Some(32),
//! max_length: Some(128),
//! output_scores: true,
//! ..Default::default()
//! };
//!
//! let output = gpt2_generator.generate(
//! Some(&[input_context, second_input_context]),
//! Some(generate_options),
//! );
//! # Ok(())
//! # }
//! ```
//!
//! Example output: \
//! ```no_run
//! # let output =
//! [
//! "The dog's owners, however, did not want to be named. According to the lawsuit, the animal's owner, a 29-year",
//! "The dog has always been part of the family. \"He was always going to be my dog and he was always looking out for me",
//! "The dog has been able to stay in the home for more than three months now. \"It's a very good dog. She's",
//! "The cat was discovered earlier this month in the home of a relative of the deceased. The cat\'s owner, who wished to remain anonymous,",
//! "The cat was pulled from the street by two-year-old Jazmine.\"I didn't know what to do,\" she said",
//! "The cat was attacked by two stray dogs and was taken to a hospital. Two other cats were also injured in the attack and are being treated."
//! ]
//! # ;
//! ```
use tch::kind::Kind::Int64;
use tch::{no_grad, Device, Kind, Tensor};
use crate::bart::LayerState as BartLayerState;
use crate::common::resources::ResourceProvider;
use crate::gpt_j::LayerState as GPTJLayerState;
use crate::gpt_neo::LayerState as GPTNeoLayerState;
use crate::pipelines::generation_utils::private_generation_utils::{
InternalGenerateOptions, PrivateLanguageGenerator,
};
use crate::prophetnet::LayerState as ProphetNetLayerState;
use crate::reformer::LayerState as ReformerLayerState;
use crate::t5::LayerState as T5LayerState;
use crate::xlnet::LayerState as XLNetLayerState;
use self::ordered_float::OrderedFloat;
use crate::pipelines::common::{ModelResource, ModelType, TokenizerOption};
extern crate ordered_float;
#[cfg(feature = "onnx")]
use crate::pipelines::onnx::ONNXLayerCache;
use crate::RustBertError;
#[cfg(feature = "remote")]
use crate::{
gpt2::{Gpt2ConfigResources, Gpt2MergesResources, Gpt2ModelResources, Gpt2VocabResources},
resources::RemoteResource,
};
/// # Configuration for text generation
pub struct GenerateConfig {
/// Model type used for generation
pub model_type: ModelType,
/// Model weights resource (default: pretrained GPT2 model)
pub model_resource: ModelResource,
/// Config resource (default: pretrained GPT2 model)
pub config_resource: Box<dyn ResourceProvider + Send>,
/// Vocab resource (default: pretrained GPT2 model)
pub vocab_resource: Box<dyn ResourceProvider + Send>,
/// Merges resource (default: pretrained GPT2 model)
pub merges_resource: Option<Box<dyn ResourceProvider + Send>>,
/// Minimum sequence length (default: 0)
pub min_length: i64,
/// Maximum sequence length (default: 20)
pub max_length: Option<i64>,
/// Sampling flag. If true, will perform top-k and/or nucleus sampling on generated tokens, otherwise greedy (deterministic) decoding (default: true)
pub do_sample: bool,
/// Early stopping flag indicating if the beam search should stop as soon as `num_beam` hypotheses have been generated (default: false)
pub early_stopping: bool,
/// Number of beams for beam search (default: 5)
pub num_beams: i64,
/// Temperature setting. Values higher than 1 will improve originality at the risk of reducing relevance (default: 1.0)
pub temperature: f64,
/// Top_k values for sampling tokens. Value higher than 0 will enable the feature (default: 0)
pub top_k: i64,
/// Top_p value for [Nucleus sampling, Holtzman et al.](http://arxiv.org/abs/1904.09751). Keep top tokens until cumulative probability reaches top_p (default: 0.9)
pub top_p: f64,
/// Repetition penalty (mostly useful for CTRL decoders). Values higher than 1 will penalize tokens that have been already generated. (default: 1.0)
pub repetition_penalty: f64,
/// Exponential penalty based on the length of the hypotheses generated (default: 1.0)
pub length_penalty: f64,
/// Number of allowed repetitions of n-grams. Values higher than 0 turn on this feature (default: 3)
pub no_repeat_ngram_size: i64,
/// Number of sequences to return for each prompt text (default: 1)
pub num_return_sequences: i64,
/// Number of beam groups for diverse beam generation. If provided and higher than 1, will split the beams into beam subgroups leading to more diverse generation.
pub num_beam_groups: Option<i64>,
/// Diversity penalty for diverse beam search. High values will enforce more difference between beam groups (default: 5.5)
pub diversity_penalty: Option<f64>,
/// Device to place the model on (default: CUDA/GPU when available)
pub device: Device,
/// Model weights precision. If not provided, will default to full precision on CPU, or the loaded weights precision otherwise
pub kind: Option<Kind>,
}
#[cfg(feature = "remote")]
impl Default for GenerateConfig {
fn default() -> GenerateConfig {
GenerateConfig {
model_type: ModelType::GPT2,
model_resource: ModelResource::Torch(Box::new(RemoteResource::from_pretrained(
Gpt2ModelResources::GPT2,
))),
config_resource: Box::new(RemoteResource::from_pretrained(Gpt2ConfigResources::GPT2)),
vocab_resource: Box::new(RemoteResource::from_pretrained(Gpt2VocabResources::GPT2)),
merges_resource: Some(Box::new(RemoteResource::from_pretrained(
Gpt2MergesResources::GPT2,
))),
min_length: 0,
max_length: Some(56),
do_sample: true,
early_stopping: true,
num_beams: 5,
temperature: 1.0,
top_k: 0,
top_p: 0.9,
repetition_penalty: 1.0,
length_penalty: 1.0,
no_repeat_ngram_size: 3,
num_return_sequences: 1,
num_beam_groups: None,
diversity_penalty: None,
device: Device::cuda_if_available(),
kind: None,
}
}
}
impl GenerateConfig {
pub(crate) fn validate(&self) {
assert!(self.temperature > 0f64, "temperature must positive");
assert!(
(self.top_p >= 0f64) & (self.top_p <= 1f64),
"top_p must be 0 and 1"
);
assert!(
self.repetition_penalty >= 1f64,
"repetition_penalty must be greater than 1"
);
assert!(
self.length_penalty > 0f64,
"length_penalty must be strictly greater than 0"
);
assert!(
self.num_return_sequences > 0i64,
"num_return_sequences must be strictly greater than 0"
);
assert!(
self.num_beams > 0i64,
"num_beams must be strictly greater than 0"
);
if !self.do_sample {
if self.num_beams == 1 {
assert_eq!(
self.num_return_sequences, 1,
"num_return_sequences must be set to 1 for greedy decoding"
)
} else {
assert!(
self.num_beams >= self.num_return_sequences,
"num_return_sequences must be lower than the number of beams"
)
}
}
if let Some(num_beam_groups_value) = self.num_beam_groups {
if num_beam_groups_value > 1 {
assert_eq!(
self.num_beams % num_beam_groups_value,
0,
"num_beam_groups must be a multiple of num_beam_groups"
)
}
}
}
}
#[derive(Debug)]
pub enum Cache {
GPT2Cache(Option<Vec<Tensor>>),
BARTCache(Option<Vec<(Option<BartLayerState>, Option<BartLayerState>)>>),
T5Cache(Option<Vec<(Option<T5LayerState>, Option<T5LayerState>)>>),
LongT5Cache(Option<Vec<(Option<T5LayerState>, Option<T5LayerState>)>>),
XLNetCache(Option<Vec<Option<XLNetLayerState>>>),
ReformerCache(Option<Vec<Option<ReformerLayerState>>>),
ProphetNetCache(Option<Vec<(Option<ProphetNetLayerState>, Option<ProphetNetLayerState>)>>),
GPTNeoCache(Option<Vec<Option<GPTNeoLayerState>>>),
GPTJCache(Option<Vec<Option<GPTJLayerState>>>),
#[cfg(feature = "onnx")]
ONNXCache(ONNXLayerCache),
None,
}
pub(crate) mod private_generation_utils {
use rust_tokenizers::TokenIdsWithOffsets;
use std::cmp::{max, min};
use std::collections::HashMap;
use std::convert::TryFrom;
use std::mem;
use rust_tokenizers::tokenizer::{truncate_sequences, TruncationStrategy};
use tch::{nn, Device, Kind, Tensor};
use crate::pipelines::common::TokenizerOption;
use crate::pipelines::generation_utils::{
BeamHypotheses, Cache, GenerateConfig, LMModelOutput, PrefixAllowedFunction,
};
use super::ordered_float::OrderedFloat;
use crate::common::kind::{get_negative_infinity, get_positive_infinity};
use crate::RustBertError;
pub struct InternalGenerateOptions<'a> {
pub min_length: i64,
pub max_length: Option<i64>,
pub do_sample: bool,
pub temperature: f64,
pub top_k: i64,
pub top_p: f64,
pub repetition_penalty: f64,
pub no_repeat_ngram_size: i64,
pub pad_token_id: Option<i64>,
pub eos_token_ids: Option<Vec<i64>>,
pub num_return_sequences: i64,
pub early_stopping: bool,
pub num_beams: i64,
pub length_penalty: f64,
pub num_beam_groups: Option<i64>,
pub diversity_penalty: Option<f64>,
pub forced_bos_token_id: Option<i64>,
pub bad_word_ids: Option<&'a Vec<Vec<i64>>>,
}
pub struct PreparedInput<'a> {
pub prepared_input: Option<Tensor>,
pub prepared_attention_mask: Option<Tensor>,
pub prepared_encoder_output: Option<&'a Tensor>,
pub prepared_decoder_input: Option<Tensor>,
pub prepared_position_ids: Option<Tensor>,
pub prepared_past: Cache,
}
pub struct GeneratedOutputWithScores {
pub indices: Tensor,
pub scores: Option<Vec<f64>>,
pub token_scores: Option<Vec<Vec<f64>>>,
}
pub trait PrivateLanguageGenerator {
fn _get_tokenizer(&self) -> &TokenizerOption;
fn get_device(&self) -> Device;
fn get_var_store_mut(&mut self) -> Result<&mut nn::VarStore, RustBertError>;
fn _get_tokenizer_mut(&mut self) -> &mut TokenizerOption;
fn get_config(&self) -> &GenerateConfig;
fn get_bos_id(&self) -> Option<i64>;
fn get_eos_ids(&self) -> Option<&Vec<i64>>;
fn get_forced_bos_token_id(&self) -> Option<i64> {
None
}
fn get_forced_eos_token_id(&self) -> Option<i64> {
None
}
fn get_pad_id(&self) -> Option<i64>;
fn is_encoder_decoder(&self) -> bool;
fn get_vocab_size(&self) -> i64;
fn get_decoder_start_id(&self) -> Option<i64>;
fn get_max_positions_embeddings(&self) -> Option<i64>;
fn forward_t(
&self,
input_ids: Option<&Tensor>,
layer_past: Cache,
attention_mask: Option<&Tensor>,
token_type_ids: Option<&Tensor>,
position_ids: Option<&Tensor>,
input_embeds: Option<&Tensor>,
encoder_outputs: Option<&Tensor>,
decoder_input_ids: Option<&Tensor>,
train: bool,
) -> Result<LMModelOutput, RustBertError>;
fn prepare_scores_for_generation(
&self,
scores: &mut Tensor,
current_length: i64,
max_length: Option<i64>,
forced_bos_token_id: Option<i64>,
) {
if current_length == 1 {
if let Some(forced_bos_token_id) =
forced_bos_token_id.or(self.get_forced_bos_token_id())
{
force_token_id_generation(
scores,
&[forced_bos_token_id],
self.get_vocab_size(),
);
}
} else if let Some(max_length) = max_length {
if let Some(forced_eos_token_id) = self.get_forced_eos_token_id() {
if current_length == max_length - 1 {
force_token_id_generation(
scores,
&[forced_eos_token_id],
self.get_vocab_size(),
);
}
}
}
}
fn encode(&self, _input_ids: &Tensor, _attention_mask: Option<&Tensor>) -> Option<Tensor> {
None
}
fn prepare_inputs_for_generation<'a>(
&self,
input_ids: Tensor,
_encoder_outputs: Option<&'a Tensor>,
past: Cache,
attention_mask: Tensor,
) -> PreparedInput<'a> {
PreparedInput {
prepared_input: Some(input_ids),
prepared_attention_mask: Some(attention_mask),
prepared_encoder_output: None,
prepared_decoder_input: None,
prepared_position_ids: None,
prepared_past: past,
}
}
fn encode_prompt_text<S>(
&self,
prompt_text: &[S],
max_len: Option<i64>,
pad_token_id: Option<i64>,
) -> Tensor
where
S: AsRef<str> + Send + Sync,
{
let token_ids = if self.is_encoder_decoder() {
let tokens = self._get_tokenizer().encode_list(
prompt_text,
max_len
.map(|max_len| max_len as usize)
.unwrap_or(usize::MAX),
&TruncationStrategy::LongestFirst,
0,
);
tokens
.into_iter()
.map(|tokenized_input| tokenized_input.token_ids)
.collect::<Vec<Vec<i64>>>()
} else {
// Special tokens (e.g. BOS) are not added at the end of the prompt for causal generation
let tokens = self._get_tokenizer().tokenize_list(prompt_text);
let token_ids = tokens
.into_iter()
.map(|prompt_tokens| {
self._get_tokenizer().convert_tokens_to_ids(&prompt_tokens)
})
.collect::<Vec<Vec<i64>>>();
let num_truncated_tokens = token_ids
.iter()
.map(|token_ids| {
max_len
.map(|max_len| {
if token_ids.len() > max_len as usize {
token_ids.len() - max_len as usize
} else {
0
}
})
.unwrap_or(0)
})
.collect::<Vec<usize>>();
token_ids
.into_iter()
.zip(num_truncated_tokens)
.map(|(tokens, num_truncated_tokens)| {
truncate_sequences(
TokenIdsWithOffsets {
ids: tokens,
offsets: vec![],
reference_offsets: vec![],
masks: vec![],
},
None,
num_truncated_tokens,
&TruncationStrategy::LongestFirst,
0,
)
.unwrap()
.0
.ids
})
.collect::<Vec<Vec<i64>>>()
};
let max_len = token_ids.iter().map(|input| input.len()).max().unwrap();
let pad_token = match pad_token_id {
Some(value) => value,
None => self._get_tokenizer().get_unk_id(),
};
let token_ids = token_ids
.into_iter()
.map(|mut input| {
let mut temp = vec![pad_token; max_len - input.len()];
if self.is_encoder_decoder() {
input.extend(temp);
input
} else {
// Pad left for causal generation
temp.extend(input);
temp
}
})
.map(|tokens| Tensor::from_slice(&tokens).to(self.get_device()))
.collect::<Vec<Tensor>>();
Tensor::stack(&token_ids, 0)
}
fn enforce_repetition_penalty(
&self,
next_token_logits: &mut Tensor,
batch_size: i64,
num_beams: i64,
prev_output_tokens: &Tensor,
repetition_penalty: f64,
) {
for i in 0..(batch_size * num_beams) {
for token_position in 0..prev_output_tokens.get(i).size()[0] {
let token = prev_output_tokens.get(i).int64_value(&[token_position]);
let updated_value = &next_token_logits.double_value(&[i, token]);
if updated_value < &0f64 {
let _ = next_token_logits.get(i).index_fill_(
0,
&Tensor::from_slice(&[token])
.to_kind(Kind::Int64)
.to_device(next_token_logits.device()),
updated_value * repetition_penalty,
);
} else {
let _ = next_token_logits.get(i).index_fill_(
0,
&Tensor::from_slice(&[token])
.to_kind(Kind::Int64)
.to_device(next_token_logits.device()),
updated_value / repetition_penalty,
);
}
}
}
}
fn get_banned_tokens(
&self,
input_ids: &Tensor,
no_repeat_ngram_size: i64,
cur_len: i64,
) -> Vec<Vec<i64>> {
// Ported from hugging face's transformers and fairseq (https://github.com/pytorch/fairseq/blob/master/fairseq/sequence_generator.py)
if cur_len + 1 < no_repeat_ngram_size {
vec![vec![]]
} else {
let input_ids = input_ids.to(Device::Cpu);
let num_hypothesis = *input_ids.size().first().unwrap();
let mut banned_tokens: Vec<Vec<i64>> = Vec::with_capacity(num_hypothesis as usize);
for hypothesis_index in 0..num_hypothesis {
let hypothesis_input_ids = input_ids.get(hypothesis_index);
let mut generated_ngram: HashMap<Vec<i64>, Vec<i64>> = HashMap::new();
let input: Vec<i64> = (0..hypothesis_input_ids.size1().unwrap()).collect();
let hypothesis_input_ids = hypothesis_input_ids
.iter::<i64>()
.unwrap()
.collect::<Vec<i64>>();
let query = &hypothesis_input_ids
[cur_len as usize + 1 - no_repeat_ngram_size as usize..]
.to_vec();
for ngram in input
.windows(no_repeat_ngram_size as usize)
.map(|win| (*win.first().unwrap(), *win.last().unwrap()))
{
let ngram = &hypothesis_input_ids[ngram.0 as usize..ngram.1 as usize + 1];
let key = ngram[..no_repeat_ngram_size as usize - 1].to_vec();
let value = *ngram.last().unwrap();
generated_ngram
.entry(key)
.or_insert_with(|| vec![value])
.push(value);
}
let hypothesis_banned_tokens = match generated_ngram.get(query) {
Some(banned_tokens) => banned_tokens.clone(),
None => vec![],
};
banned_tokens.push(hypothesis_banned_tokens);
}
banned_tokens
}
}
fn top_k_top_p_filtering(
&self,
logits: &mut Tensor,
top_k: i64,
top_p: f64,
min_tokens_to_keep: i64,
) {
// Nucleus and top-k filtering introduced by Holtzman et al. (http://arxiv.org/abs/1904.09751)
// Ported from https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
let vocab_size = *logits.size().last().unwrap();
if top_k > 0 {
let top_k = vocab_size - min(max(top_k, min_tokens_to_keep), vocab_size);
let (_, indices_to_remove) = logits.topk(top_k, -1, false, false);
for index in 0..*logits.size().first().unwrap() {
let _ = logits.get(index).index_fill_(
0,
&indices_to_remove.get(index),
f64::NEG_INFINITY,
);
}
}
if top_p < 1f64 {
let (sorted_logits, sorted_indices) = logits.sort(-1, true);
let cumulative_probabilities = sorted_logits
.softmax(-1, sorted_logits.kind())
.cumsum(-1, sorted_logits.kind());
let mut sorted_indices_to_remove =
cumulative_probabilities.ge(top_p).to_kind(Kind::Int64);
if min_tokens_to_keep > 1 {
let _ = sorted_indices_to_remove.index_fill_(
1,
&Tensor::arange_start(
0,
min_tokens_to_keep + 1,
(Kind::Int64, logits.device()),
),
0,
);
}
let _ = sorted_indices_to_remove.index_copy_(
1,
&Tensor::arange_start(1, vocab_size, (Kind::Int64, logits.device())),
&sorted_indices_to_remove
.slice(1, 0, vocab_size - 1, 1)
.copy(),
);
let _ = sorted_indices_to_remove.index_fill_(
1,
&Tensor::from_slice(&[0])
.to_kind(Kind::Int64)
.to_device(sorted_indices_to_remove.device()),
0,
);
let indices_to_remove = sorted_indices_to_remove
.scatter(1, &sorted_indices, &sorted_indices_to_remove)
.to_kind(Kind::Bool);
let _ = logits.masked_fill_(&indices_to_remove, f64::NEG_INFINITY);
}
}
fn run_hamming_diversity_penalty(
&self,
scores: &mut Tensor,
current_tokens: &Tensor,
diversity_penalty: f64,
num_beams: i64,
batch_size: i64,
group_size: i64,
group_start_index: i64,
) {
if group_start_index > 0 {
let vocab_size = *scores.size().last().unwrap();
for batch_index in 0..batch_size {
let previous_group_tokens = current_tokens.slice(
0,
batch_index * num_beams,
batch_index * num_beams + group_start_index,
1,
);
let diversity_penalty = previous_group_tokens
.bincount::<Tensor>(None, vocab_size)
* diversity_penalty;
let _ = scores
.slice(
0,
batch_index * group_size,
(batch_index + 1) * group_size,
1,
)
.subtract_(&diversity_penalty);
}
}
}
fn apply_prefix_allowed_tokens_function(
&self,
prefix_allowed_tokens_fn: &dyn Fn(i64, &Tensor) -> Vec<i64>,
num_beams: i64,
input_ids: &Tensor,
scores: &mut Tensor,
) {
let mask = scores.new_full(
scores.size().as_slice(),
get_positive_infinity(scores.kind()).unwrap(),
(scores.kind(), scores.device()),
);
for idx in 0..scores.size()[0] {
let batch_id = idx / num_beams;
let allowed_tokens: Vec<i64> =
prefix_allowed_tokens_fn(batch_id, &input_ids.get(idx));
let _ = mask.get(idx).index_fill_(
0,
&Tensor::from_slice(allowed_tokens.as_slice()).to(scores.device()),
0,
);
}
let _ = scores.subtract_(&mask);
}
fn split_bad_word_ids<'a>(
&self,
bad_word_ids: Option<&'a Vec<Vec<i64>>>,
) -> (Option<Vec<i64>>, Option<Vec<&'a Vec<i64>>>) {
if let Some(bad_word_ids) = bad_word_ids {
let mut bad_word_ids_length_1 = vec![];
let mut bad_word_ids_length_greater_than_1 = vec![];
for bad_word in bad_word_ids {
if bad_word.len() == 1 {
bad_word_ids_length_1.push(bad_word[0]);
} else {
bad_word_ids_length_greater_than_1.push(bad_word);
}
}
let bad_word_ids_length_1 = if !bad_word_ids_length_1.is_empty() {
Some(bad_word_ids_length_1)
} else {
None
};
let bad_word_ids_length_greater_than_1 =
if !bad_word_ids_length_greater_than_1.is_empty() {
Some(bad_word_ids_length_greater_than_1)
} else {
None
};
(bad_word_ids_length_1, bad_word_ids_length_greater_than_1)
} else {
(None, None)
}
}
fn tokens_match(&self, prev_tokens: &[i64], tokens: &[i64]) -> bool {
if tokens.is_empty() {
true
} else if tokens.len() > prev_tokens.len() {
false
} else {
&prev_tokens[prev_tokens.len() - tokens.len()..] == tokens
}
}
fn calc_static_bad_word_mask(
&self,
scores: &Tensor,
bad_words_id_length_1: &[i64],
) -> Tensor {
let mut static_bad_words_mask =
Tensor::zeros([scores.size()[1]], (Kind::Int8, scores.device()));
let _ = static_bad_words_mask.index_fill_(
0,
&Tensor::from_slice(bad_words_id_length_1).to_device(scores.device()),
1,
);
static_bad_words_mask.unsqueeze(0).totype(Kind::Bool)
}
fn get_dynamic_bad_word_ids(
&self,
prev_tokens: &[Vec<i64>],
bad_word_ids_length_greater_than_1: &[&Vec<i64>],
) -> Vec<Vec<i64>> {
let mut banned_tokens = Vec::new();
for prev_token_sequence in prev_tokens {
let mut sequence_banned_tokens = Vec::new();
for bad_word_ids in bad_word_ids_length_greater_than_1 {
if self
.tokens_match(prev_token_sequence, &bad_word_ids[..bad_word_ids.len() - 1])
{
sequence_banned_tokens.push(*bad_word_ids.last().unwrap());
}
}
banned_tokens.push(sequence_banned_tokens);
}
banned_tokens
}
fn ban_bad_words(
&self,
dynamic_bad_words: Option<&Vec<&Vec<i64>>>,
static_bad_words_mask: Option<&Tensor>,
token_ids: &Tensor,
scores: &mut Tensor,
) {
let longest_bad_word = dynamic_bad_words
.iter()
.map(|bad_word| bad_word.len())
.max()
.unwrap() as i64;
let last_token_ids = token_ids.slice(1, -longest_bad_word, None, 1);
let mut prev_tokens = Vec::new();
for sequence_idx in 0..token_ids.size()[0] {
prev_tokens.push(
last_token_ids
.get(sequence_idx)
.iter::<i64>()
.unwrap()
.collect::<Vec<i64>>(),
)
}
let dynamic_bad_words_mask = if let Some(dynamic_bad_words) = dynamic_bad_words {
let dynamic_banned_tokens =
self.get_dynamic_bad_word_ids(&prev_tokens, dynamic_bad_words);
let dynamic_banned_mask =
Tensor::zeros(scores.size().as_slice(), (Kind::Int, scores.device()));
for (sequence_index, sequence_ban_tokens) in
dynamic_banned_tokens.iter().enumerate()
{
if !sequence_ban_tokens.is_empty() {
let _ = dynamic_banned_mask.get(sequence_index as i64).index_fill_(
0,
&Tensor::from_slice(sequence_ban_tokens).to_device(scores.device()),
1,
);
}
}
Some(dynamic_banned_mask.to_kind(Kind::Bool))
} else {
None
};
let combined_bad_word_mask = {
if let (Some(static_mask), Some(dynamic_mask)) =
(static_bad_words_mask, &dynamic_bad_words_mask)
{
Some(static_mask.bitwise_or_tensor(dynamic_mask))
} else {
None
}
};
let bad_word_mask = if combined_bad_word_mask.is_some() {
combined_bad_word_mask.as_ref()
} else if static_bad_words_mask.is_some() {
static_bad_words_mask
} else if dynamic_bad_words_mask.is_some() {
dynamic_bad_words_mask.as_ref()
} else {
None
};
if let Some(bad_word_mask) = bad_word_mask {
let _ = scores.masked_fill_(bad_word_mask, f64::NEG_INFINITY);
}
}
fn generate_no_beam_search(
&self,
input_ids: Tensor,
encoder_outputs: Option<Tensor>,
cur_len: i64,
batch_size: i64,
attention_mask: Tensor,
gen_opt: InternalGenerateOptions,
prefix_allowed_tokens_fn: Option<PrefixAllowedFunction>,
output_scores: bool,
) -> GeneratedOutputWithScores {
let mut unfinished_sentences =
Tensor::ones([batch_size], (Kind::Int64, self.get_device()));
let mut sentence_lengths: Tensor =
Tensor::ones([batch_size], (Kind::Int64, self.get_device()));
let (bad_word_ids_length_1, bad_word_ids_length_greater_than_1) =
self.split_bad_word_ids(gen_opt.bad_word_ids);
let mut static_bad_words_mask: Option<Tensor> = None;
let mut attention_mask = attention_mask.copy();
let mut input_ids = input_ids.copy();
let mut past: Cache = Cache::None;
let mut outputs: Tensor;
let mut current_length = cur_len;
let mut token_scores_output: Option<Vec<Tensor>> =
if output_scores { Some(vec![]) } else { None };
loop {
let prepared_input = self.prepare_inputs_for_generation(
input_ids.copy(),
encoder_outputs.as_ref(),
past,
attention_mask.copy(),
);
let temp = self
.forward_t(
prepared_input.prepared_input.as_ref(),
prepared_input.prepared_past,
prepared_input.prepared_attention_mask.as_ref(),
None,
prepared_input.prepared_position_ids.as_ref(),
None,
prepared_input.prepared_encoder_output,
prepared_input.prepared_decoder_input.as_ref(),
false,
)
.unwrap();
outputs = temp.lm_logits;
past = temp.cache;
let mut next_token_logits = outputs.select(1, -1);
// Reduce probability for repeated inputs
if gen_opt.repetition_penalty > 1f64 {
self.enforce_repetition_penalty(
&mut next_token_logits,
batch_size,
1,
&input_ids,
gen_opt.repetition_penalty,
)
}
// Get bad word_ids and set their probability to 0
if gen_opt.bad_word_ids.is_some() {
// Calculate static bad words masks if not set yet
if let Some(bad_word_ids_length_1) = &bad_word_ids_length_1 {
if static_bad_words_mask.is_none() {
static_bad_words_mask = Some(self.calc_static_bad_word_mask(
&next_token_logits,
bad_word_ids_length_1,
));
}
}
self.ban_bad_words(
bad_word_ids_length_greater_than_1.as_ref(),
static_bad_words_mask.as_ref(),
&input_ids,
&mut next_token_logits,
);
}
// Get banned tokens and set their probability to 0
if gen_opt.no_repeat_ngram_size > 0 {
let banned_tokens = self.get_banned_tokens(
&input_ids,
gen_opt.no_repeat_ngram_size,
current_length,
);
for (batch_index, index_banned_token) in
(0..banned_tokens.len() as i64).zip(banned_tokens)
{
let _ = next_token_logits.get(batch_index).index_fill_(
0,
&Tensor::from_slice(&index_banned_token)
.to_device(next_token_logits.device()),
f64::NEG_INFINITY,
);
}
}
// Apply custom prefix constraint function
if let Some(prefix_allowed_tokens_function) = prefix_allowed_tokens_fn {
self.apply_prefix_allowed_tokens_function(
prefix_allowed_tokens_function,
1,
&input_ids,
&mut next_token_logits,
)
}
// Do not allow eos token if min length is not reached
if (gen_opt.eos_token_ids.is_some()) & (current_length < gen_opt.min_length) {
let _ = next_token_logits.index_fill_(
1,
&Tensor::from_slice(gen_opt.eos_token_ids.as_ref().unwrap())
.to(next_token_logits.device()),
f64::NEG_INFINITY,
);
}
self.prepare_scores_for_generation(
&mut next_token_logits,
current_length,
gen_opt.max_length,
gen_opt.forced_bos_token_id,
);
// Top-k and top-p sampling
let next_token = if gen_opt.do_sample {
if gen_opt.temperature > 1f64 {
next_token_logits /= gen_opt.temperature;
}
self.top_k_top_p_filtering(
&mut next_token_logits,
gen_opt.top_k,
gen_opt.top_p,
1,
);
let probabilities = next_token_logits.softmax(-1, next_token_logits.kind());
probabilities.multinomial(1, false).squeeze_dim(1)
} else {
next_token_logits.argmax(-1, false)
};
if let Some(prev_scores) = token_scores_output.as_mut() {
let finished_mask = unfinished_sentences.eq(0);
prev_scores.push(
next_token_logits
.log_softmax(-1, next_token_logits.kind())
.gather(1, &next_token.reshape([-1, 1]), false)
.squeeze()
.masked_fill(&finished_mask, 0),
);
};
// Add tokens to unfinished sentences
let tokens_to_add = match &gen_opt.eos_token_ids {
Some(_) => {
next_token * &unfinished_sentences
- gen_opt.pad_token_id.unwrap() * (&unfinished_sentences - 1)
}
None => next_token,
};
input_ids = Tensor::cat(&[input_ids, tokens_to_add.unsqueeze(-1)], -1);
if gen_opt.eos_token_ids.is_some() {
for eos_token_id in gen_opt.eos_token_ids.as_ref().unwrap() {
let sentence_with_eos =
tokens_to_add.eq(*eos_token_id).to_kind(Kind::Int64);
let sentence_with_eos: Tensor = sentence_with_eos * &unfinished_sentences;
let _ = sentence_lengths.masked_fill_(
&sentence_with_eos
.to_kind(Kind::Bool)
.to_device(sentence_lengths.device()),
current_length + 1,
);
unfinished_sentences = -unfinished_sentences * (sentence_with_eos - 1);
}
if i64::try_from(unfinished_sentences.max()).unwrap() == 0 {
break;
}
}
if !self.is_encoder_decoder() {
attention_mask = Tensor::cat(
&[
attention_mask.as_ref(),
Tensor::ones(
[*attention_mask.size().first().unwrap(), 1],
(Kind::Int64, attention_mask.device()),
)
.as_ref(),
],
-1,
);
}
current_length += 1;
if let Some(max_length) = gen_opt.max_length {
if current_length >= max_length {
let _ = sentence_lengths.masked_fill_(
&unfinished_sentences
.to_kind(Kind::Bool)
.to_device(sentence_lengths.device()),
current_length,
);
break;
}
}
}
let scores_output = token_scores_output.as_ref().map(|scores_tensor| {
(Tensor::stack(scores_tensor, 1).sum_dim_intlist(
[1].as_slice(),
false,
Kind::Float,
) / sentence_lengths.pow_tensor_scalar(gen_opt.length_penalty))
.iter::<f64>()
.unwrap()
.collect::<Vec<f64>>()
});
let token_scores_output = token_scores_output.map(|score_tensors| {
Tensor::stack(&score_tensors, 1)
.split(1, 0)
.iter()
.map(|sequence_scores| {
sequence_scores
.squeeze_dim(0)
.iter::<f64>()
.unwrap()
.collect::<Vec<f64>>()
})
.collect()
});
GeneratedOutputWithScores {
indices: input_ids,
scores: scores_output,
token_scores: token_scores_output,
}
}
fn generate_beam_search(
&self,
mut input_ids: Tensor,
encoder_outputs: Option<Tensor>,
cur_len: i64,
batch_size: i64,
mut attention_mask: Tensor,
gen_opt: InternalGenerateOptions,
prefix_allowed_tokens_fn: Option<PrefixAllowedFunction>,
output_scores: bool,
) -> GeneratedOutputWithScores {
let num_beam_groups = gen_opt.num_beam_groups.unwrap_or(1);
let num_sub_beams = gen_opt.num_beams / num_beam_groups;
let diversity_penalty = gen_opt.diversity_penalty.unwrap_or(5.5);
let (bad_word_ids_length_1, bad_word_ids_length_greater_than_1) =
self.split_bad_word_ids(gen_opt.bad_word_ids);
let mut static_bad_words_mask: Option<Tensor> = None;
let mut hypotheses = (0..batch_size)
.map(|_| {
BeamHypotheses::new(
gen_opt.num_beams,
gen_opt.max_length,
gen_opt.length_penalty,
gen_opt.early_stopping,
)
})
.collect::<Vec<BeamHypotheses>>();
let vocab_size = self.get_vocab_size();
let beam_scores = Tensor::ones(
[batch_size, gen_opt.num_beams],
(Kind::Float, self.get_device()),
) * -1e9;
let _ = beam_scores
.slice(1, 0, *beam_scores.size().last().unwrap(), num_sub_beams)
.fill_(0);
let mut beam_scores = beam_scores.view_([-1]);
let mut beam_tokens = Tensor::zeros(
[batch_size * gen_opt.num_beams],
(Kind::Int64, self.get_device()),
);
let mut beam_indices = Tensor::zeros(
[batch_size * gen_opt.num_beams],
(Kind::Int64, self.get_device()),
);
let mut saved_beam_scores: Option<Vec<Tensor>> =
if output_scores { Some(vec![]) } else { None };
let mut current_tokens = Tensor::new();
let mut past: Cache = Cache::None;
let mut done = vec![false; batch_size as usize];
let mut outputs: Tensor;
let mut encoder_outputs = encoder_outputs;
let mut current_length = cur_len;
loop {
if num_beam_groups > 1 {
current_tokens = Tensor::zeros(
[batch_size * gen_opt.num_beams],
(input_ids.kind(), input_ids.device()),
);
}
let prepared_input = self.prepare_inputs_for_generation(
input_ids.copy(),
encoder_outputs.as_ref(),
past,
attention_mask.copy(),
);
let temp = self
.forward_t(
prepared_input.prepared_input.as_ref(),
prepared_input.prepared_past,
prepared_input.prepared_attention_mask.as_ref(),
None,
prepared_input.prepared_position_ids.as_ref(),
None,
prepared_input.prepared_encoder_output,
prepared_input.prepared_decoder_input.as_ref(),
false,
)
.unwrap();
outputs = temp.lm_logits;
past = temp.cache;
for beam_group_index in 0..num_beam_groups {
let group_start_index = beam_group_index * num_sub_beams;
let group_end_index = min(group_start_index + num_sub_beams, gen_opt.num_beams);
let group_size = group_end_index - group_start_index;
let (group_input_ids, batch_group_indices) = if num_beam_groups > 1 {
let mut batch_group_indices: Vec<i64> =
Vec::with_capacity((batch_size * group_size) as usize);
for batch_index in 0..batch_size {
batch_group_indices.extend(
(group_start_index..group_end_index)
.map(|value| value + batch_index * gen_opt.num_beams),
)
}
let batch_group_indices =
Tensor::from_slice(batch_group_indices.as_slice())
.to(input_ids.device());
(
Some(input_ids.index_select(0, &batch_group_indices)),
Some(batch_group_indices),
)
} else {
(None, None)
};
let mut next_token_logits = if num_beam_groups <= 1 {
outputs.select(1, -1)
} else {
outputs
.select(1, -1)
.index_select(0, batch_group_indices.as_ref().unwrap())
};
// Reduce probability for repeated inputs
if gen_opt.repetition_penalty > 1f64 {
self.enforce_repetition_penalty(
&mut next_token_logits,
batch_size,
1,
group_input_ids.as_ref().unwrap_or(&input_ids),
gen_opt.repetition_penalty,
)
}
if gen_opt.temperature > 1f64 {
next_token_logits /= gen_opt.temperature;
}
self.prepare_scores_for_generation(
&mut next_token_logits,
current_length,
gen_opt.max_length,
gen_opt.forced_bos_token_id,
);
let mut scores = next_token_logits.log_softmax(-1, next_token_logits.kind());
// Do not allow eos token if min length is not reached
if (gen_opt.eos_token_ids.is_some()) & (current_length < gen_opt.min_length) {
let _ = scores.index_fill_(
1,
&Tensor::from_slice(gen_opt.eos_token_ids.as_ref().unwrap())
.to(scores.device()),
f64::NEG_INFINITY,
);
}
// Get bad word_ids and set their probability to 0
if gen_opt.bad_word_ids.is_some() {
// Calculate static bad words masks if not set yet
if let Some(bad_word_ids_length_1) = &bad_word_ids_length_1 {
if static_bad_words_mask.is_none() {
static_bad_words_mask = Some(
self.calc_static_bad_word_mask(&scores, bad_word_ids_length_1),
);
}
}
self.ban_bad_words(
bad_word_ids_length_greater_than_1.as_ref(),
static_bad_words_mask.as_ref(),
group_input_ids.as_ref().unwrap_or(&input_ids),
&mut scores,
);
}
// Get repeated tokens and set their probability to 0
if gen_opt.no_repeat_ngram_size > 0 {
let banned_tokens = self.get_banned_tokens(
group_input_ids.as_ref().unwrap_or(&input_ids),
gen_opt.no_repeat_ngram_size,
current_length,
);
for (batch_index, index_banned_token) in
(0..banned_tokens.len() as i64).zip(banned_tokens)
{
let _ = scores.get(batch_index).index_fill_(
0,
&Tensor::from_slice(&index_banned_token)
.to_device(next_token_logits.device()),
f64::NEG_INFINITY,
);
}
}
// Update scores with diversity penalty
if num_beam_groups > 1 {
self.run_hamming_diversity_penalty(
&mut scores,
¤t_tokens,
diversity_penalty,
gen_opt.num_beams,
batch_size,
group_size,
group_start_index,
);
}
// Apply custom prefix constraint function
if let Some(prefix_allowed_tokens_function) = prefix_allowed_tokens_fn {
self.apply_prefix_allowed_tokens_function(
prefix_allowed_tokens_function,
num_sub_beams,
&input_ids,
&mut scores,
)
}
let mut next_scores: Tensor = &scores
+ (if num_beam_groups > 1 {
beam_scores
.index_select(0, batch_group_indices.as_ref().unwrap())
.unsqueeze(-1)
.expand_as(&scores)
} else {
beam_scores.unsqueeze(-1).expand_as(&scores)
});
let (next_scores, next_tokens) = if gen_opt.do_sample {
self.top_k_top_p_filtering(
&mut next_scores,
gen_opt.top_k,
gen_opt.top_p,
2,
);
let _scores = next_scores
.contiguous()
.view((batch_size, group_size * vocab_size));
let probabilities = _scores.softmax(-1, _scores.kind());
let next_tokens = probabilities.multinomial(2 * group_size, false);
let _scores = _scores.gather(-1, &next_tokens, false);
let (_scores, next_scores_indices) = _scores.sort(1, true);
let next_tokens = next_tokens.gather(-1, &next_scores_indices, false);
(_scores, next_tokens)
} else {
let _scores = next_scores
.contiguous()
.view((batch_size, group_size * vocab_size));
_scores.topk(2 * group_size, 1, true, true)
};
let eos_token_ids = gen_opt.eos_token_ids.as_ref();
let beam_ids_tensor = &next_tokens.divide_scalar_mode(vocab_size, "floor");
let effective_beam_ids_tensor =
(&next_tokens.ones_like().cumsum(0, Kind::Int64) - 1) * group_size
+ beam_ids_tensor;
let token_id_tensor = &next_tokens - beam_ids_tensor * vocab_size;
let (max_scores, _) = next_scores.max_dim(1, false);
let mut eos_mask = token_id_tensor.ones_like();
if let Some(eos_token_id) = eos_token_ids {
eos_mask -= token_id_tensor.eq(eos_token_id[0]).to_kind(Kind::Int64);
}
let eos_mask2 = eos_mask
.cumsum(1, Kind::Int64)
.le(group_size)
.to_kind(Kind::Bool)
.logical_and(&eos_mask);
let group_beam_scores = next_scores.masked_select(&eos_mask2);
let group_beam_tokens = token_id_tensor.masked_select(&eos_mask2);
let group_beam_indices = effective_beam_ids_tensor.masked_select(&eos_mask2);
let eos_pos = (eos_mask.ones_like() - eos_mask).nonzero();
for eos_idx in 0..eos_pos.size()[0] {
let eos_data = eos_pos.get(eos_idx);
let batch_index = eos_data.int64_value(&[0]);
if !done[batch_index as usize] {
let beam_index_pos = eos_data.int64_value(&[1]);
let is_beam_token_worse_than_top_num_beams =
beam_index_pos >= gen_opt.num_beams;
if is_beam_token_worse_than_top_num_beams {
continue;
}
let effective_beam_id = effective_beam_ids_tensor
.int64_value(&[batch_index, beam_index_pos]);
let beam_token_score =
next_scores.double_value(&[batch_index, beam_index_pos]);
let saved_beam_scores =
saved_beam_scores.as_ref().map(|step_wise_scores| {
Tensor::stack(step_wise_scores, 1)
.get(effective_beam_id)
.copy()
});
hypotheses[batch_index as usize].add(
input_ids.get(effective_beam_id).copy(),
beam_token_score,
saved_beam_scores,
);
}
}
for batch_index in 0..batch_size {
if done[batch_index as usize] {
let _ = group_beam_scores
.narrow(0, batch_index * gen_opt.num_beams, gen_opt.num_beams)
.fill_(0f64);
let _ = group_beam_tokens
.narrow(0, batch_index * gen_opt.num_beams, gen_opt.num_beams)
.fill_(gen_opt.pad_token_id.unwrap());
let _ = group_beam_indices
.narrow(0, batch_index * gen_opt.num_beams, gen_opt.num_beams)
.fill_(0);
continue;
} else {
done[batch_index as usize] |= hypotheses[batch_index as usize]
.is_done(max_scores.double_value(&[batch_index]), current_length);
}
}
if num_beam_groups <= 1 {
beam_scores = group_beam_scores.view(-1);
beam_tokens = group_beam_tokens.view(-1);
beam_indices = group_beam_indices.view(-1);
} else {
let _ = beam_scores.index_copy_(
0,
batch_group_indices.as_ref().unwrap(),
&group_beam_scores,
);
let _ = beam_tokens.index_copy_(
0,
batch_group_indices.as_ref().unwrap(),
&group_beam_tokens,
);
let new_indices = gen_opt.num_beams
* group_beam_indices.divide_scalar_mode(group_size, "floor")
+ group_start_index
+ group_beam_indices.remainder(group_size);
let _ = beam_indices.index_copy_(
0,
batch_group_indices.as_ref().unwrap(),
&new_indices,
);
let _ = current_tokens.index_copy_(
0,
batch_group_indices.as_ref().unwrap(),
&group_beam_tokens,
);
}
}
if let Some(scores_output) = saved_beam_scores.as_mut() {
scores_output.push(beam_scores.copy());
}
if done.iter().all(|&x| x) {
break;
}
input_ids = Tensor::cat(
&[
input_ids.index_select(0, &beam_indices),
beam_tokens.unsqueeze(1),
],
-1,
);
current_length += 1;
if let Some(max_length) = gen_opt.max_length {
if current_length >= max_length {
break;
}
}
encoder_outputs = self.reorder_cache(&mut past, encoder_outputs, &beam_indices);
if !self.is_encoder_decoder() {
attention_mask = Tensor::cat(
&[
attention_mask.as_ref(),
Tensor::ones(
[*attention_mask.size().first().unwrap(), 1],
(Kind::Int64, attention_mask.device()),
)
.as_ref(),
],
-1,
);
}
}
let mut batch_index = 0i64;
let mut saved_beam_scores = saved_beam_scores
.map(|step_wise_scores| Tensor::stack(&step_wise_scores, 1).split(1, 0));
loop {
if batch_index == batch_size {
break;
}
if done[batch_index as usize] {
batch_index += 1;
continue;
}
for beam_index in 0..gen_opt.num_beams {
let effective_beam_id = batch_index * gen_opt.num_beams + beam_index;
let beam_saved_token_scores = saved_beam_scores.as_mut().map(|saved_tokens| {
mem::replace(&mut saved_tokens[effective_beam_id as usize], Tensor::new())
});
let final_score = f64::try_from(beam_scores.get(effective_beam_id)).unwrap();
let final_tokens = input_ids.get(effective_beam_id);
hypotheses[batch_index as usize].add(
final_tokens,
final_score,
beam_saved_token_scores,
);
}
batch_index += 1;
}
let (output_batch_size, output_num_return_sequences_per_batch) = if gen_opt.do_sample {
(batch_size, 1)
} else {
(
batch_size * gen_opt.num_return_sequences,
gen_opt.num_return_sequences,
)
};
let mut sentence_lengths =
Tensor::zeros([output_batch_size], (Kind::Int64, input_ids.device()));
let mut best_ids = vec![];
let mut scores_output = if output_scores {
Some(Vec::with_capacity(best_ids.len()))
} else {
None
};
let mut token_scores_output = if output_scores {
Some(Vec::with_capacity(best_ids.len()))
} else {
None
};
for (hypothesis_index, hypothesis) in hypotheses.iter().enumerate() {
let mut sorted_hypotheses = hypothesis.clone();
sorted_hypotheses
.beams
.sort_by_key(|(score, _, _)| OrderedFloat(*score));
for j in 0..output_num_return_sequences_per_batch {
let effective_batch_index =
output_num_return_sequences_per_batch * hypothesis_index as i64 + j;
let (best_score, best_hyp, best_token_scores) =
sorted_hypotheses.beams.pop().unwrap();
let _ = sentence_lengths.index_fill_(
0,
&Tensor::from_slice(&[effective_batch_index]).to(sentence_lengths.device()),
*best_hyp.size().first().unwrap(),
);
best_ids.push(best_hyp);
if let Some(current_best_scores) = &mut scores_output {
current_best_scores.push(best_score);
}
if let Some(current_best_token_scores) = &mut token_scores_output {
current_best_token_scores.push(
best_token_scores
.unwrap()
.iter::<f64>()
.unwrap()
.collect::<Vec<f64>>(),
);
}
}
}
let sentence_max_length = gen_opt
.max_length
.map(|max_length| {
min(
i64::try_from(sentence_lengths.max()).unwrap() + 1,
max_length,
)
})
.unwrap_or(i64::try_from(sentence_lengths.max()).unwrap() + 1);
let mut decoded = input_ids.new_empty(
[output_batch_size, sentence_max_length],
(Kind::Int64, input_ids.device()),
);
if i64::try_from(sentence_lengths.max()).unwrap()
!= i64::try_from(sentence_lengths.min()).unwrap()
{
let _ = decoded.fill_(
gen_opt
.pad_token_id
.unwrap_or_else(|| gen_opt.eos_token_ids.as_ref().unwrap()[0]),
);
}
for (hypothesis_index, best_id) in best_ids.iter().enumerate() {
let _ = decoded.get(hypothesis_index as i64).index_copy_(
0,
&Tensor::arange_start(
0,
i64::try_from(sentence_lengths.get(hypothesis_index as i64)).unwrap(),
(Kind::Int64, input_ids.device()),
),
best_id,
);
let sentence_length =
i64::try_from(sentence_lengths.get(hypothesis_index as i64)).unwrap();
let sentence_length_max = gen_opt
.max_length
.unwrap_or_else(|| i64::try_from(sentence_lengths.max()).unwrap());
if sentence_length < sentence_length_max {
let _ = decoded.get(hypothesis_index as i64).index_fill_(
0,
&Tensor::from_slice(&[sentence_length]).to_device(input_ids.device()),
gen_opt.eos_token_ids.as_ref().unwrap()[0],
);
}
}
GeneratedOutputWithScores {
indices: decoded,
scores: scores_output,
token_scores: token_scores_output,
}
}
fn reorder_cache(
&self,
past: &mut Cache,
_encoder_outputs: Option<Tensor>,
_beam_indices: &Tensor,
) -> Option<Tensor> {
match past {
Cache::None => None,
_ => {
panic!("Not implemented");
}
}
}
}
pub fn force_token_id_generation(scores: &mut Tensor, token_ids: &[i64], vocab_size: i64) {
let impossible_tokens: Vec<i64> = (0..vocab_size)
.filter(|pos| !token_ids.contains(pos))
.collect();
let impossible_tokens = Tensor::from_slice(&impossible_tokens).to_device(scores.device());
let _ = scores.index_fill_(
1,
&impossible_tokens,
get_negative_infinity(scores.kind()).unwrap(),
);
}
}
#[derive(Debug, Clone)]
/// # Generated text output
/// Contains generated text and an optional log-likelihood score for the generated sequence
pub struct GeneratedTextOutput {
pub text: String,
pub score: Option<f64>,
}
#[derive(Debug, Clone)]
/// # Generated indices output
/// Contains generated indices and an optional log-likelihood score for the generated sequence and individual tokens
pub struct GeneratedIndicesOutput {
pub indices: Vec<i64>,
pub score: Option<f64>,
pub token_scores: Option<Vec<f64>>,
}
pub type PrefixAllowedFunction<'a> = &'a dyn Fn(i64, &Tensor) -> Vec<i64>;
/// Type alias for a function defining allowed tokens based on current tokens generated.
/// This function should take a `batch_id` and associated tensor of already generated tokens and
/// should return a vector of allowed tokens. This is useful for controlled generation, i.e.
/// deterministic generation of a token continuation if a sequence of token occurs.
#[derive(Clone, Copy, Default)]
/// # Generation options for text generation.
/// When provided to a `generate` method, these options will take priority over the `GenerateConfig` used to create the
/// `LanguageGenerator`. Some of these options may be left as `None`, options without a value will individually default
/// to the `GenerateConfig`.
pub struct GenerateOptions<'a> {
/// Minimum sequence length
pub min_length: Option<i64>,
/// Maximum sequence length
pub max_length: Option<i64>,
/// Maximum number of new tokens to generate (useful for causal generation models).
/// Only one of `max_length` and `max_new_tokens` should be provided.
/// When both are given, `max_new_tokens` is ignored and the `max_length` setting is used.
pub max_new_tokens: Option<i64>,
/// Early stopping flag indicating if the beam search should stop as soon as `num_beam` hypotheses have been generated
pub early_stopping: Option<bool>,
/// Number of sequences to return for each prompt text
pub num_return_sequences: Option<i64>,
/// Number of beams for beam search
pub num_beams: Option<i64>,
pub num_beam_groups: Option<i64>,
/// Sampling flag. If true, will perform top-k and/or nucleus sampling on generated tokens, otherwise greedy (deterministic) decoding
pub do_sample: Option<bool>,
/// Temperature setting. Values higher than 1 will improve originality at the risk of reducing relevance
pub temperature: Option<f64>,
/// Top_k values for sampling tokens. Value higher than 0 will enable the feature
pub top_k: Option<i64>,
/// Top_p value for [Nucleus sampling, Holtzman et al.](http://arxiv.org/abs/1904.09751). Keep top tokens until cumulative probability reaches top_p
pub top_p: Option<f64>,
/// Repetition penalty (mostly useful for CTRL decoders). Values higher than 1 will penalize tokens that have been already generated.
pub repetition_penalty: Option<f64>,
/// Exponential penalty based on the length of the hypotheses generated
pub length_penalty: Option<f64>,
/// Number of allowed repetitions of n-grams. Values higher than 0 turn on this feature
pub no_repeat_ngram_size: Option<i64>,
/// Diversity penalty for diverse beam search. High values will enforce more difference between beam groups
pub diversity_penalty: Option<f64>,
/// Decoder start token id
pub decoder_start_token_id: Option<i64>,
/// Forced first token generated
pub forced_bos_token_id: Option<i64>,
/// Function to control the generation process. The function should take a `batch_id` (i64) and a tensor of token_ids already generated and returns a `Vec<i64>` of allowed tokens.
pub prefix_allowed_tokens_fn: Option<PrefixAllowedFunction<'a>>,
/// List of bad word ids (may be a sequence of word ids) that will be banned during the generation
pub bad_word_ids: Option<&'a Vec<Vec<i64>>>,
/// Flag indicating if text generation scores should be returned
pub output_scores: bool,
}
macro_rules! unpack_config {
($field_name:ident, $generate_options: ident, $generate_config: ident) => {
$generate_options.map_or($generate_config.$field_name, |opts| {
opts.$field_name.unwrap_or($generate_config.$field_name)
})
};
}
/// # Common trait for text generation models.
/// Main API for text generation
pub trait LanguageGenerator: PrivateLanguageGenerator {
/// Generate text based on a vector of promp texts.
///
/// # Arguments
///
/// * `prompt_texts` - `Option<Vec<&str>>` Optional vector of text prompts. An empty prompt to the model may be passed if the model implement a `bos_id`.
/// * `generate_options` - `Option<GenerateOptions>` Optional set of generate options. If not (or partially) provided, will use the settings provided when creating the generator
///
/// # Returns
/// * `Vec<TextOutput>` Vector of length *number_of_prompts* x *num_return_sequences* containing TextOutput with the generated texts and the generation score if `output_scores` is true.
///
/// # Example
///
/// ```no_run
/// # use std::path::PathBuf;
/// # use tch::Device;
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::gpt2::GPT2Generator;
/// use rust_bert::pipelines::generation_utils::{
/// GenerateConfig, GenerateOptions, LanguageGenerator,
/// };
/// use tch::Tensor;
/// # let mut home: PathBuf = dirs::home_dir().unwrap();
/// # home.push("rustbert");
/// # home.push("gpt2");
/// # let config_path = &home.as_path().join("config.json");
/// # let vocab_path = &home.as_path().join("vocab.txt");
/// # let merges_path = &home.as_path().join("merges.txt");
/// # let weights_path = &home.as_path().join("model.ot");
/// let device = Device::cuda_if_available();
/// let generate_config = GenerateConfig {
/// max_length: Some(30),
/// do_sample: true,
/// num_beams: 5,
/// temperature: 1.1,
/// num_return_sequences: 3,
/// ..Default::default()
/// };
/// let gpt2_generator = GPT2Generator::new(generate_config)?;
/// let input_context = "The dog";
/// let second_input_context = "The cat was";
///
/// //Example custom function for fine-grained generation control
/// fn force_one_paragraph(_batch_id: i64, previous_token_ids: &Tensor) -> Vec<i64> {
/// let paragraph_tokens = [198, 628];
///
/// for paragraph_token in paragraph_tokens.iter() {
/// if previous_token_ids
/// .iter::<i64>()
/// .unwrap()
/// .collect::<Vec<i64>>()
/// .contains(paragraph_token)
/// {
/// return vec![50256];
/// }
/// }
/// (0..50255).collect()
/// }
///
/// let generate_options = GenerateOptions {
/// min_length: Some(32),
/// max_length: Some(128),
/// output_scores: true,
/// prefix_allowed_tokens_fn: Some(&force_one_paragraph),
/// ..Default::default()
/// };
///
/// let output = gpt2_generator.generate(
/// Some(&[input_context, second_input_context]),
/// Some(generate_options),
/// );
/// # Ok(())
/// # }
/// ```
/// Example output: \
/// ```no_run
/// # let output =
/// [
/// "The dog's owners, however, did not want to be named. According to the lawsuit, the animal's owner, a 29-year",
/// "The dog has always been part of the family. \"He was always going to be my dog and he was always looking out for me",
/// "The dog has been able to stay in the home for more than three months now. \"It's a very good dog. She's",
/// "The cat was discovered earlier this month in the home of a relative of the deceased. The cat\'s owner, who wished to remain anonymous,",
/// "The cat was pulled from the street by two-year-old Jazmine.\"I didn't know what to do,\" she said",
/// "The cat was attacked by two stray dogs and was taken to a hospital. Two other cats were also injured in the attack and are being treated."
/// ]
/// # ;
/// ```
fn generate<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions>,
) -> Result<Vec<GeneratedTextOutput>, RustBertError>
where
S: AsRef<str> + Send + Sync,
{
let indices_outputs = self.generate_indices(prompt_texts, generate_options)?;
let mut output = Vec::with_capacity(indices_outputs.len());
for generated_sequence in indices_outputs {
output.push(GeneratedTextOutput {
text: self
._get_tokenizer()
.decode(&generated_sequence.indices, true, true),
score: generated_sequence.score,
});
}
Ok(output)
}
/// Generate token indices without decoding (useful for token-level operations before returning final text or as validation step during training).
///
/// # Arguments
///
/// * `prompt_texts` - `Option<Vec<&str>>` Optional vector of text prompts. An empty prompt to the model may be passed if the model implement a `bos_id`.
/// * `generate_options` - `Option<GenerateOptions>` Optional set of generate options. If not (or partially) provided, will use the settings provided when creating the generator
///
/// # Returns
/// * `Vec<IndicesOutput>` Vector of length *number_of_prompts* x *num_return_sequences* containing IndicesOutput with the generated indices and the generation score if `output_scores` is true.
///
/// # Example
///
/// ```no_run
/// # use std::path::PathBuf;
/// # use tch::Device;
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::gpt2::GPT2Generator;
/// use rust_bert::pipelines::generation_utils::{
/// GenerateConfig, GenerateOptions, LanguageGenerator,
/// };
/// use tch::Tensor;
/// # let mut home: PathBuf = dirs::home_dir().unwrap();
/// # home.push("rustbert");
/// # home.push("gpt2");
/// # let config_path = &home.as_path().join("config.json");
/// # let vocab_path = &home.as_path().join("vocab.txt");
/// # let merges_path = &home.as_path().join("merges.txt");
/// # let weights_path = &home.as_path().join("model.ot");
/// let device = Device::cuda_if_available();
/// let generate_config = GenerateConfig {
/// max_length: Some(30),
/// do_sample: true,
/// num_beams: 5,
/// temperature: 1.1,
/// num_return_sequences: 3,
/// ..Default::default()
/// };
/// let gpt2_generator = GPT2Generator::new(generate_config)?;
/// let input_context = "The dog";
/// let second_input_context = "The cat was";
///
/// //Example custom function for fine-grained generation control
/// fn force_one_paragraph(_batch_id: i64, previous_token_ids: &Tensor) -> Vec<i64> {
/// let paragraph_tokens = [198, 628];
///
/// for paragraph_token in paragraph_tokens.iter() {
/// if previous_token_ids
/// .iter::<i64>()
/// .unwrap()
/// .collect::<Vec<i64>>()
/// .contains(paragraph_token)
/// {
/// return vec![50256];
/// }
/// }
/// (0..50255).collect()
/// }
///
/// let generate_options = GenerateOptions {
/// min_length: Some(32),
/// max_length: Some(128),
/// output_scores: true,
/// prefix_allowed_tokens_fn: Some(&force_one_paragraph),
/// ..Default::default()
/// };
///
/// let output = gpt2_generator.generate_indices(
/// Some(&[input_context, second_input_context]),
/// Some(generate_options),
/// );
/// # Ok(())
/// # }
/// ```
fn generate_indices<S>(
&self,
prompt_texts: Option<&[S]>,
generate_options: Option<GenerateOptions>,
) -> Result<Vec<GeneratedIndicesOutput>, RustBertError>
where
S: AsRef<str> + Send + Sync,
{
let eos_token_ids = self.get_eos_ids();
let config = self.get_config();
let max_length = generate_options.map_or(config.max_length, |generate_options| {
generate_options.max_length
});
let encoding_max_len = if self.is_encoder_decoder() {
self.get_max_positions_embeddings()
} else {
max_length
};
let pad_token_id = match self.get_pad_id() {
Some(value) => Some(value),
None => eos_token_ids.as_ref().map(|eos_ids| eos_ids[0]),
};
let input_ids = match prompt_texts {
Some(prompts) if !prompts.is_empty() => {
self.encode_prompt_text(prompts, encoding_max_len, pad_token_id)
}
None => match self.get_bos_id() {
Some(bos_id) => Tensor::ones([1, 1], (Int64, self.get_device())) * bos_id,
None => return Err(RustBertError::ValueError(
"A model with a BOS token must be used to start generation with an empty input"
.to_string(),
)),
},
_ => return Ok(Vec::new()),
};
self.generate_from_ids_and_past(input_ids, None, generate_options)
}
/// Generate token indices given a list of indices (useful when the input has been pre-tokenized).
/// Returns a list of output tokens that need to be decoded using a tokenizer.
///
/// # Arguments
///
/// * `input_ids` - `Tensor` pre-tokenized and encoded input for generation.
/// * `generate_options` - `Option<GenerateOptions>` Optional set of generate options. If not (or partially) provided, will use the settings provided when creating the generator
///
/// # Returns
/// * `Vec<IndicesOutput>` Vector of length *number_of_prompts* x *num_return_sequences* containing IndicesOutput with the generated indices and the generation score if `output_scores` is true.
///
/// # Example
///
/// ```no_run
/// # use std::path::PathBuf;
/// # use tch::Device;
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::gpt2::GPT2Generator;
/// use rust_bert::pipelines::generation_utils::{
/// GenerateConfig, GenerateOptions, LanguageGenerator,
/// };
/// use tch::{Kind, Tensor};
/// # let mut home: PathBuf = dirs::home_dir().unwrap();
/// # home.push("rustbert");
/// # home.push("gpt2");
/// # let config_path = &home.as_path().join("config.json");
/// # let vocab_path = &home.as_path().join("vocab.txt");
/// # let merges_path = &home.as_path().join("merges.txt");
/// # let weights_path = &home.as_path().join("model.ot");
/// let device = Device::cuda_if_available();
///
/// let gpt2_generator = GPT2Generator::new(Default::default())?;
/// let input_tensor = Tensor::randn(&[32, 128], (Kind::Int64, Device::Cpu));
/// let input_mask = Tensor::ones(&[32, 128], (Kind::Int64, Device::Cpu));
///
/// let generate_options = GenerateOptions {
/// min_length: Some(32),
/// max_length: Some(128),
/// output_scores: true,
/// ..Default::default()
/// };
///
/// let output = gpt2_generator.generate_from_ids_and_past(
/// input_tensor,
/// Some(input_mask),
/// Some(generate_options),
/// );
/// # Ok(())
/// # }
/// ```
fn generate_from_ids_and_past(
&self,
mut input_ids: Tensor,
mut attention_mask: Option<Tensor>,
generate_options: Option<GenerateOptions>,
) -> Result<Vec<GeneratedIndicesOutput>, RustBertError> {
let eos_token_ids = PrivateLanguageGenerator::get_eos_ids(self).cloned();
let config = PrivateLanguageGenerator::get_config(self);
// Set generation options. Priority goes to options provided to the `generate` method, then
// model configuration, then default values.
let do_sample = unpack_config!(do_sample, generate_options, config);
let num_return_sequences = unpack_config!(num_return_sequences, generate_options, config);
let num_beams = unpack_config!(num_beams, generate_options, config);
let min_length = unpack_config!(min_length, generate_options, config);
let early_stopping = unpack_config!(early_stopping, generate_options, config);
let temperature = unpack_config!(temperature, generate_options, config);
let top_k = unpack_config!(top_k, generate_options, config);
let top_p = unpack_config!(top_p, generate_options, config);
let repetition_penalty = unpack_config!(repetition_penalty, generate_options, config);
let length_penalty = unpack_config!(length_penalty, generate_options, config);
let no_repeat_ngram_size = unpack_config!(no_repeat_ngram_size, generate_options, config);
let num_beam_groups = generate_options.map_or(config.num_beam_groups, |opts| {
opts.num_beam_groups.or(config.num_beam_groups)
});
let diversity_penalty = generate_options.map_or(config.diversity_penalty, |opts| {
opts.diversity_penalty.or(config.diversity_penalty)
});
let decoder_start_token_id = generate_options.and_then(|opts| opts.decoder_start_token_id);
let forced_bos_token_id = generate_options.and_then(|opts| opts.forced_bos_token_id);
let bad_word_ids = generate_options.and_then(|opts| opts.bad_word_ids);
let prefix_allowed_tokens_fn =
generate_options.and_then(|opts| opts.prefix_allowed_tokens_fn);
let output_scores = generate_options.map_or(false, |opts| opts.output_scores);
let pad_token_id = match self.get_pad_id() {
Some(value) => Some(value),
None => eos_token_ids.as_ref().map(|eos_ids| eos_ids[0]),
};
let input_id_size = input_ids.size();
let mut input_ids_len = *input_id_size.last().unwrap();
if input_ids_len == 0 {
input_ids = Tensor::ones(
[*input_id_size.first().unwrap(), 1],
(Int64, input_ids.device()),
) * self
.get_bos_id()
.expect("`bos_token_id` has to be defined when no `input_ids` are provided.");
attention_mask = Some(Tensor::ones(
[*input_id_size.first().unwrap(), 1],
(Int64, input_ids.device()),
));
input_ids_len += 1;
}
let cur_len = if !self.is_encoder_decoder() {
*input_ids.size().last().unwrap()
} else {
1
};
let batch_size = *input_ids.size().first().unwrap();
let (effective_batch_size, effective_batch_mult) = match do_sample {
true => (batch_size * num_return_sequences, num_return_sequences),
false => (batch_size, 1),
};
let attention_mask = match attention_mask {
Some(value) => value,
None => match pad_token_id {
Some(pad_id) => input_ids.ne(pad_id).to_kind(Int64),
None => input_ids.ones_like().to_kind(Int64),
},
};
let encoder_outputs = if self.is_encoder_decoder() {
let encoder_outputs = self
.encode(&input_ids, Some(&attention_mask))
.ok_or(RustBertError::UnsupportedError)?;
let expanded_batch_indices = Tensor::arange(batch_size, (Int64, input_ids.device()))
.view((-1, 1))
.repeat([1, num_beams * effective_batch_mult])
.view(-1);
Some(encoder_outputs.index_select(0, &expanded_batch_indices))
} else {
None
};
let (input_ids, attention_mask) = if !self.is_encoder_decoder() {
if (num_return_sequences > 1) | (num_beams > 1) {
(
input_ids
.unsqueeze(1)
.expand(
[batch_size, effective_batch_mult * num_beams, cur_len],
true,
)
.contiguous()
.view((effective_batch_size * num_beams, cur_len)),
attention_mask
.unsqueeze(1)
.expand(
[batch_size, effective_batch_mult * num_beams, cur_len],
true,
)
.contiguous()
.view((effective_batch_size * num_beams, cur_len)),
)
} else {
(input_ids, attention_mask)
}
} else {
let decoder_start_token_id = decoder_start_token_id
.or(self.get_decoder_start_id())
.ok_or(RustBertError::ValueError(
"decoder start id must be specified for encoder decoders".to_string(),
))?;
let input_ids = Tensor::full(
[effective_batch_size * num_beams, 1],
decoder_start_token_id,
(Int64, input_ids.device()),
);
let attention_mask = if (num_return_sequences > 1) | (num_beams > 1) {
attention_mask
.unsqueeze(1)
.expand(
[batch_size, effective_batch_mult * num_beams, input_ids_len],
true,
)
.contiguous()
.view((effective_batch_size * num_beams, input_ids_len))
} else {
attention_mask
};
(input_ids, attention_mask)
};
let max_length = if let Some(generate_options) = generate_options {
match (generate_options.max_length, generate_options.max_new_tokens) {
(Some(max_length), _) => Some(max_length),
(None, Some(max_new_tokens)) => {
Some(max_new_tokens + input_ids.size().last().unwrap())
}
(None, None) => config.max_length,
}
} else {
config.max_length
};
if let Some(max_length) = max_length {
if input_ids.size2()?.1 > max_length {
return Err(RustBertError::ValueError("The input ids exceeds the maximum length for generation.\
Reduce the size of the provided input ids or increase the allowable maximum generation length.".to_string()));
}
}
if max_length.is_none() & eos_token_ids.is_none() {
return Err(RustBertError::InvalidConfigurationError("No maximum length given for a model without an EOS token. \
This would lead to an infinite generation loop. Please provide a `max_length` or `max_new_tokens`".to_string()));
}
let gen_opt = InternalGenerateOptions {
min_length,
max_length,
do_sample,
temperature,
top_k,
top_p,
repetition_penalty,
no_repeat_ngram_size,
pad_token_id,
eos_token_ids,
num_return_sequences,
early_stopping,
num_beams,
length_penalty,
num_beam_groups,
diversity_penalty,
forced_bos_token_id,
bad_word_ids,
};
let generated_output_with_scores = no_grad(|| {
if num_beams > 1 {
self.generate_beam_search(
input_ids,
encoder_outputs,
cur_len,
effective_batch_size,
attention_mask,
gen_opt,
prefix_allowed_tokens_fn,
output_scores,
)
} else {
self.generate_no_beam_search(
input_ids,
encoder_outputs,
cur_len,
effective_batch_size,
attention_mask,
gen_opt,
prefix_allowed_tokens_fn,
output_scores,
)
}
});
let (decoded, scores, mut token_scores) = (
generated_output_with_scores.indices,
generated_output_with_scores.scores,
generated_output_with_scores.token_scores,
);
let num_sequences = *decoded.size().first().unwrap();
let mut output = Vec::with_capacity(num_sequences as usize);
for sequence_index in 0..num_sequences {
let indices = decoded
.as_ref()
.get(sequence_index)
.iter::<i64>()
.unwrap()
.collect::<Vec<i64>>();
let score = scores
.as_ref()
.map(|scores_value| scores_value[sequence_index as usize]);
let token_scores = token_scores
.as_mut()
.map(|token_scores| std::mem::take(&mut token_scores[sequence_index as usize]));
output.push(GeneratedIndicesOutput {
indices,
score,
token_scores,
});
}
Ok(output)
}
/// Returns a reference to the text generator's tokenizer
///
/// # Returns
/// * `&TokenizerOption` Reference to the generator's tokenizer.
///
/// # Example
///
/// ```no_run
/// # use std::path::PathBuf;
/// # use tch::Device;
/// # fn main() -> anyhow::Result<()> {
/// use rust_bert::gpt2::GPT2Generator;
/// use rust_bert::pipelines::generation_utils::{GenerateConfig, LanguageGenerator};
/// use tch::Tensor;
/// # let mut home: PathBuf = dirs::home_dir().unwrap();
/// # home.push("rustbert");
/// # home.push("gpt2");
/// # let config_path = &home.as_path().join("config.json");
/// # let vocab_path = &home.as_path().join("vocab.txt");
/// # let merges_path = &home.as_path().join("merges.txt");
/// # let weights_path = &home.as_path().join("model.ot");
/// let device = Device::cuda_if_available();
/// let generate_config = GenerateConfig {
/// max_length: Some(30),
/// do_sample: true,
/// num_beams: 5,
/// temperature: 1.1,
/// num_return_sequences: 3,
/// ..Default::default()
/// };
/// let gpt2_generator = GPT2Generator::new(generate_config)?;
/// let tokenizer = gpt2_generator.get_tokenizer();
/// tokenizer.tokenize("Hello, world!");
/// # Ok(())
/// # }
/// ```
fn get_tokenizer(&self) -> &TokenizerOption {
self._get_tokenizer()
}
fn get_tokenizer_mut(&mut self) -> &mut TokenizerOption {
self._get_tokenizer_mut()
}
fn half(&mut self) -> Result<(), RustBertError> {
self.get_var_store_mut()?.half();
Ok(())
}
fn float(&mut self) -> Result<(), RustBertError> {
self.get_var_store_mut()?.float();
Ok(())
}
fn set_device(&mut self, device: Device) -> Result<(), RustBertError> {
self.get_var_store_mut()?.set_device(device);
Ok(())
}
}
#[derive(Debug)]
struct BeamHypotheses {
max_length: Option<i64>,
length_penalty: f64,
early_stopping: bool,
num_beams: i64,
beams: Vec<(f64, Tensor, Option<Tensor>)>,
worst_score: f64,
}
impl Clone for BeamHypotheses {
fn clone(&self) -> Self {
BeamHypotheses {
max_length: self.max_length,
length_penalty: self.length_penalty,
early_stopping: self.early_stopping,
num_beams: self.num_beams,
beams: self
.beams
.iter()
.map(|(score, tensor, scores_tensor)| {
(
*score,
tensor.copy(),
scores_tensor
.as_ref()
.map(|scores_tensor| scores_tensor.copy()),
)
})
.collect::<Vec<(f64, Tensor, Option<Tensor>)>>(),
worst_score: self.worst_score,
}
}
}
impl BeamHypotheses {
fn new(
num_beams: i64,
max_length: Option<i64>,
length_penalty: f64,
early_stopping: bool,
) -> BeamHypotheses {
BeamHypotheses {
max_length: max_length.map(|max_length| max_length - 1),
length_penalty,
early_stopping,
num_beams,
beams: Vec::with_capacity(num_beams as usize + 1),
worst_score: 1e9f64,
}
}
fn len(&self) -> i64 {
self.beams.len() as i64
}
fn add(
&mut self,
hypothesis: Tensor,
sum_log_probabilities: f64,
token_scores: Option<Tensor>,
) {
let score =
sum_log_probabilities / ((hypothesis.size()[0] as f64).powf(self.length_penalty));
if (self.len() < self.num_beams) | (score > self.worst_score) {
let token_scores = token_scores.map(|scores_tensor| {
scores_tensor.squeeze_dim(0).diff::<Tensor>(
1,
0,
Some(Tensor::zeros(
[1],
(scores_tensor.kind(), scores_tensor.device()),
)),
None,
)
});
self.beams.push((score, hypothesis, token_scores));
if self.len() > self.num_beams {
let (worst_score_position, _) = self
.beams
.iter()
.enumerate()
.min_by_key(|(_, (score, _, _))| OrderedFloat(*score))
.unwrap();
let _ = self.beams.remove(worst_score_position);
}
self.worst_score = self
.beams
.iter()
.min_by_key(|(score, _, _)| OrderedFloat(*score))
.unwrap()
.0;
}
}
fn is_done(&self, best_sum_log_probabilities: f64, current_length: i64) -> bool {
if self.len() < self.num_beams {
false
} else if self.early_stopping {
true
} else {
self.worst_score
>= best_sum_log_probabilities / (current_length as f64).powf(self.length_penalty)
}
}
}
/// Container holding a language model output for generation tasks
pub struct LMModelOutput {
/// Logits for each vocab item and position
pub lm_logits: Tensor,
/// cached state for improved efficiency during decoding
pub cache: Cache,
}